Найти все базисы системы векторов пример. Векторное пространство: размерность и базис, разложение вектора по базису. Разложение вектора по базису векторного пространства

Линейной комбинацией векторов называется вектор
, где λ 1 , ... , λ m – произвольные коэффициенты.

Система векторов
называется линейно зависимой, если существует ее линейная комбинация, равная, в которой есть хотя бы один ненулевой коэффициент.

Система векторов
называется линейно независимой, если в любой ее линейной комбинации, равной, все коэффициенты нулевые.

Базисом системы векторов
называется ее непустая линейно независимая подсистема, через которую можно выразить любой вектор системы.

П р и м е р 2. Найти базис системы векторов= (1, 2, 2, 4),= (2, 3, 5, 1),= (3, 4, 8, -2),= (2, 5, 0, 3) и выразить остальные векторы через базис.

Р е ш е н и е. Строим матрицу, в которой координаты данных векторов располагаем по столбцам. Приводим ее к ступенчатому виду.

~
~
~
.

Базис данной системы образуют векторы ,,, которым соответствуют ведущие элементы строк, выделенные кружками. Для выражения векторарешаем уравнениеx 1 +x 2 + x 4 =. Оно сводится к системе линейных уравнений, матрица которой получается из исходной перестановкой столбца, соответствующего, на место столбца свободных членов. Поэтому для решения системы используем полученную матрицу в ступенчатом виде, сделав в ней необходимые перестановки.

Последовательно находим:

x 1 + 4 = 3, x 1 = -1;

= -+2.

Замечание 1. Если требуется выразить через базис несколько векторов, то для каждого из них строится соответствующая система линейных уравнений. Эти системы будут отличаться только столбцами свободных членов. Поэтому для их решения можно составить одну матрицу, в которой будет несколько столбцов свободных членов. При этом каждая система решается независимо от остальных.

Замечание 2. Для выражения любого вектора достаточно использовать только базисные векторы системы, стоящие перед ним. При этом нет необходимости переформировывать матрицу, достаточно поставить вертикальную черту в нужном месте.

У п р а ж н е н и е 2. Найти базис системы векторов и выразить остальные векторы через базис:

а) = (1, 3, 2, 0),= (3, 4, 2, 1),= (1, -2, -2, 1),= (3, 5, 1, 2);

б) = (2, 1, 2, 3),= (1, 2, 2, 3),= (3, -1, 2, 2),= (4, -2, 2, 2);

в) = (1, 2, 3),= (2, 4, 3),= (3, 6, 6),= (4, -2, 1);= (2, -6, -2).

    1. 3. Фундаментальная система решений

Система линейных уравнений называется однородной, если все ее свободные члены равны нулю.

Фундаментальной системой решений однородной системы линейных уравнений называется базис множества ее решений.

Пусть дана неоднородная система линейных уравнений. Однородной системой, ассоциированной с данной, называется система, полученная из данной заменой всех свободных членов на нули.

Если неоднородная система совместна и неопределенна, то ее произвольное решение имеет вид f н +  1 f о1 + ... +  k f о k ,гдеf н – частное решение неоднородной системы иf о1 , ... , f о k – фундаментальная система решений ассоциированной однородной системы.

П р и м е р 3. Найти частное решение неоднородной системы из примера 1 и фундаментальную систему решений ассоциированной однородной системы.

Р е ш е н и е. Запишем решение, полученное в примере 1, в векторном виде и разложим получившийся вектор в сумму по свободным параметрам, имеющимся в нем, и фиксированным числовым значениям:

= (x 1 , x 2 , x 3 , x 4) = (–2a + 7b – 2, a, –2b + 1, b) = (–2a, a, 0, 0) + (7b, 0, –2b, b) + +(– 2, 0, 1, 0) = a(-2, 1, 0, 0) + b(7, 0, -2, 1) + (– 2, 0, 1, 0).

­­ Получаемf н =(– 2, 0, 1, 0), f о1 = (-2, 1, 0, 0), f о2 = (7, 0, -2, 1).

Замечание. Аналогично решается задача нахождения фундаментальной системы решений однородной системы.

У п р а ж н е н и е 3.1 Найти фундаментальную систему решений однородной системы:

а)

б)

в) 2x 1 – x 2 +3x 3 = 0.

У п р а ж н е н и е 3.2. Найти частное решение неоднородной системы и фундаментальную систему решений ассоциированной однородной системы:

а)

б)

В статье о n -мерных векторах мы пришли к понятию линейного пространства, порождаемого множеством n -мерных векторов. Теперь нам предстоит рассмотреть не менее важные понятия, такие как размерность и базис векторного пространства. Они напрямую связаны с понятием линейно независимой системы векторов, так что дополнительно рекомендуется напомнить себе основы и этой темы.

Введем некоторые определения.

Определение 1

Размерность векторного пространства – число, соответствующее максимальному количеству линейно независимых векторов в этом пространстве.

Определение 2

Базис векторного пространства – совокупность линейно независимых векторов, упорядоченная и в своей численности равная размерности пространства.

Рассмотрим некое пространство n -векторов. Размерность его соответственно равна n . Возьмем систему из n -единичных векторов:

e (1) = (1 , 0 , . . . , 0) e (2) = (0 , 1 , . . . , 0) e (n) = (0 , 0 , . . . , 1)

Используем эти векторы в качестве составляющих матрицы A: она будет являться единичной с размерностью n на n . Ранг этой матрицы равен n . Следовательно, векторная система e (1) , e (2) , . . . , e (n) является линейно независимой. При этом к системе невозможно добавить ни одного вектора, не нарушив ее линейной независимости.

Так как число векторов в системе равно n , то размерность пространства n -мерных векторов равна n , а единичные векторы e (1) , e (2) , . . . , e (n) являются базисом указанного пространства.

Из полученного определения сделаем вывод: любая система n -мерных векторов, в которой число векторов меньше n , не является базисом пространства.

Если мы поменяем местами первый и второй вектор, получим систему векторов e (2) , e (1) , . . . , e (n) . Она также будет являться базисом n -мерного векторного пространства. Составим матрицу, взяв за ее строки векторы полученной системы. Матрица может быть получена из единичной матрицы перестановкой местами первых двух строк, ранг ее будет равен n . Система e (2) , e (1) , . . . , e (n) линейно независима и является базисом n -мерного векторного пространства.

Переставив местами в исходной системе другие векторы, получим еще один базис.

Мы можем взять линейно независимую систему неединичных векторов, и она также будет представлять собой базис n -мерного векторного пространства.

Определение 3

Векторное пространство с размерностью n имеет столько базисов, сколько существует линейно независимых систем из n -мерных векторов числом n.

Плоскость является двумерным пространством – ее базисом будут два любых неколлинеарных вектора. Базисом трехмерного пространства послужат три любых некомпланарных вектора.

Рассмотрим применение данной теории на конкретных примерах.

Пример 1

Исходные данные: векторы

a = (3 , - 2 , 1) b = (2 , 1 , 2) c = (3 , - 1 , - 2)

Необходимо определить, являются ли указанные векторы базисом трехмерного векторного пространства.

Решение

Для решения поставленной задачи исследуем заданную систему векторов на линейную зависимость. Составим матрицу, где строки – координаты векторов. Определим ранг матрицы.

A = 3 2 3 - 2 1 - 1 1 2 - 2 A = 3 - 2 1 2 1 2 3 - 1 - 2 = 3 · 1 · (- 2) + (- 2) · 2 · 3 + 1 · 2 · (- 1) - 1 · 1 · 3 - (- 2) · 2 · (- 2) - 3 · 2 · (- 1) = = - 25 ≠ 0 ⇒ R a n k (A) = 3

Следовательно, заданные условием задачи векторы линейно независимы, и их численность равна размерности векторного пространства – они являются базисом векторного пространства.

Ответ: указанные векторы являются базисом векторного пространства.

Пример 2

Исходные данные: векторы

a = (3 , - 2 , 1) b = (2 , 1 , 2) c = (3 , - 1 , - 2) d = (0 , 1 , 2)

Необходимо определить, может ли указанная система векторов являться базисом трехмерного пространства.

Решение

Указанная в условии задачи система векторов является линейно зависимой, т.к. максимальное число линейно независимых векторов равно 3. Таким образом, указанная система векторов не может служить базисом трехмерного векторного пространства. Но стоит отметить, что подсистема исходной системы a = (3 , - 2 , 1) , b = (2 , 1 , 2) , c = (3 , - 1 , - 2) является базисом.

Ответ: указанная система векторов не является базисом.

Пример 3

Исходные данные: векторы

a = (1 , 2 , 3 , 3) b = (2 , 5 , 6 , 8) c = (1 , 3 , 2 , 4) d = (2 , 5 , 4 , 7)

Могут ли они являться базисом четырехмерного пространства?

Решение

Cоставим матрицу, используя в качестве строк координаты заданных векторов

A = 1 2 3 3 2 5 6 8 1 3 2 4 2 5 4 7

По методу Гаусса определим ранг матрицы:

A = 1 2 3 3 2 5 6 8 1 3 2 4 2 5 4 7 ~ 1 2 3 3 0 1 0 2 0 1 - 1 1 0 1 - 2 1 ~ ~ 1 2 3 3 0 1 0 2 0 0 - 1 - 1 0 0 - 2 - 1 ~ 1 2 3 3 0 1 0 2 0 0 - 1 - 1 0 0 0 1 ⇒ ⇒ R a n k (A) = 4

Следовательно, система заданных векторов линейно независима и их численность равна размерности векторного пространства – они являются базисом четырехмерного векторного пространства.

Ответ: заданные векторы являются базисом четырехмерного пространства.

Пример 4

Исходные данные: векторы

a (1) = (1 , 2 , - 1 , - 2) a (2) = (0 , 2 , 1 , - 3) a (3) = (1 , 0 , 0 , 5)

Составляют ли они базис пространства размерностью 4?

Решение

Исходная система векторов линейно независима, но численность векторов в ней недостаточна, чтобы стать базисом четырехмерного пространства.

Ответ: нет, не составляют.

Разложение вектора по базису

Примем, что произвольные векторы e (1) , e (2) , . . . , e (n) являются базисом векторного n-мерного пространства. Добавим к ним некий n -мерный вектор x → : полученная система векторов станет линейно зависимой. Свойства линейной зависимости гласят, что хотя бы один из векторов такой системы может линейно выражаться через остальные. Переформулируя это утверждение, можно говорить о том, что хотя бы один из векторов линейно зависимой системы может раскладываться по остальным векторам.

Таким образом, мы пришли к формулировке важнейшей теоремы:

Определение 4

Любой вектор n -мерного векторного пространства единственным образом раскладывается по базису.

Доказательство 1

Докажем эту теорему:

зададим базис n -мерного векторного пространства - e (1) , e (2) , . . . , e (n) . Сделаем систему линейно зависимой, добавив к ней n -мерный вектор x → . Этот вектор может быть линейно выражен через исходные векторы e:

x = x 1 · e (1) + x 2 · e (2) + . . . + x n · e (n) , где x 1 , x 2 , . . . , x n - некоторые числа.

Теперь докажем, что такое разложение является единственным. Предположим, что это не так и существует еще одно подобное разложение:

x = x ~ 1 e (1) + x 2 ~ e (2) + . . . + x ~ n e (n) , где x ~ 1 , x ~ 2 , . . . , x ~ n - некие числа.

Отнимем от левой и правой частей этого равенства соответственно левую и правую части равенства x = x 1 · e (1) + x 2 · e (2) + . . . + x n · e (n) . Получим:

0 = (x ~ 1 - x 1) · e (1) + (x ~ 2 - x 2) · e (2) + . . . (x ~ n - x n) · e (2)

Система базисных векторов e (1) , e (2) , . . . , e (n) линейно независима; по определению линейной независимости системы векторов равенство выше возможно только тогда, когда все коэффициенты (x ~ 1 - x 1) , (x ~ 2 - x 2) , . . . , (x ~ n - x n) будут равны нулю. Из чего справедливым будет: x 1 = x ~ 1 , x 2 = x ~ 2 , . . . , x n = x ~ n . И это доказывает единственный вариант разложения вектора по базису.

При этом коэффициенты x 1 , x 2 , . . . , x n называются координатами вектора x → в базисе e (1) , e (2) , . . . , e (n) .

Доказанная теория делает понятным выражение «задан n -мерный вектор x = (x 1 , x 2 , . . . , x n) »: рассматривается вектор x → n -мерного векторного пространства, и его координаты заданы в некотором базисе. При этом также понятно, что этот же вектор в другом базисе n -мерного пространства будет иметь другие координаты.

Рассмотрим следующий пример: допустим, что в некотором базисе n -мерного векторного пространства задана система из n линейно независимых векторов

а также задан вектор x = (x 1 , x 2 , . . . , x n) .

Векторы e 1 (1) , e 2 (2) , . . . , e n (n) в этом случае также являются базисом этого векторного пространства.

Предположим, что необходимо определить координаты вектора x → в базисе e 1 (1) , e 2 (2) , . . . , e n (n) , обозначаемые как x ~ 1 , x ~ 2 , . . . , x ~ n .

Вектор x → будет представлен следующим образом:

x = x ~ 1 · e (1) + x ~ 2 · e (2) + . . . + x ~ n · e (n)

Запишем это выражение в координатной форме:

(x 1 , x 2 , . . . , x n) = x ~ 1 · (e (1) 1 , e (1) 2 , . . . , e (1) n) + x ~ 2 · (e (2) 1 , e (2) 2 , . . . , e (2) n) + . . . + + x ~ n · (e (n) 1 , e (n) 2 , . . . , e (n) n) = = (x ~ 1 e 1 (1) + x ~ 2 e 1 (2) + . . . + x ~ n e 1 (n) , x ~ 1 e 2 (1) + x ~ 2 e 2 (2) + + . . . + x ~ n e 2 (n) , . . . , x ~ 1 e n (1) + x ~ 2 e n (2) + . . . + x ~ n e n (n))

Полученное равенство равносильно системе из n линейных алгебраических выражений с n неизвестными линейными переменными x ~ 1 , x ~ 2 , . . . , x ~ n:

x 1 = x ~ 1 e 1 1 + x ~ 2 e 1 2 + . . . + x ~ n e 1 n x 2 = x ~ 1 e 2 1 + x ~ 2 e 2 2 + . . . + x ~ n e 2 n ⋮ x n = x ~ 1 e n 1 + x ~ 2 e n 2 + . . . + x ~ n e n n

Матрица этой системы будет иметь следующий вид:

e 1 (1) e 1 (2) ⋯ e 1 (n) e 2 (1) e 2 (2) ⋯ e 2 (n) ⋮ ⋮ ⋮ ⋮ e n (1) e n (2) ⋯ e n (n)

Пусть это будет матрица A , и ее столбцы – векторы линейно независимой системы векторов e 1 (1) , e 2 (2) , . . . , e n (n) . Ранг матрицы – n , и ее определитель отличен от нуля. Это свидетельствует о том, что система уравнений имеет единственное решение, определяемое любым удобным способом: к примеру, методом Крамера или матричным методом. Таким образом мы сможем определить координаты x ~ 1 , x ~ 2 , . . . , x ~ n вектора x → в базисе e 1 (1) , e 2 (2) , . . . , e n (n) .

Применим рассмотренную теорию на конкретном примере.

Пример 6

Исходные данные: в базисе трехмерного пространства заданы векторы

e (1) = (1 , - 1 , 1) e (2) = (3 , 2 , - 5) e (3) = (2 , 1 , - 3) x = (6 , 2 , - 7)

Необходимо подтвердить факт, что система векторов e (1) , e (2) , e (3) также служит базисом заданного пространства, а также определить координаты вектора х в заданном базисе.

Решение

Система векторов e (1) , e (2) , e (3) будет являться базисом трехмерного пространства, если она линейно независима. Выясним эту возможность, определив ранг матрицы A , строки которой – заданные векторы e (1) , e (2) , e (3) .

Используем метод Гаусса:

A = 1 - 1 1 3 2 - 5 2 1 - 3 ~ 1 - 1 1 0 5 - 8 0 3 - 5 ~ 1 - 1 1 0 5 - 8 0 0 - 1 5

R a n k (A) = 3 . Таким образом, система векторов e (1) , e (2) , e (3) линейно независима и является базисом.

Пусть в базисе вектор x → имеет координаты x ~ 1 , x ~ 2 , x ~ 3 . Связь этих координат определяется уравнением:

x 1 = x ~ 1 e 1 (1) + x ~ 2 e 1 (2) + x ~ 3 e 1 (3) x 2 = x ~ 1 e 2 (1) + x ~ 2 e 2 (2) + x ~ 3 e 2 (3) x 3 = x ~ 1 e 3 (1) + x ~ 2 e 3 (2) + x ~ 3 e 3 (3)

Применим значения согласно условиям задачи:

x ~ 1 + 3 x ~ 2 + 2 x ~ 3 = 6 - x ~ 1 + 2 x ~ 2 + x ~ 3 = 2 x ~ 1 - 5 x ~ 2 - 3 x 3 = - 7

Решим систему уравнений методом Крамера:

∆ = 1 3 2 - 1 2 1 1 - 5 - 3 = - 1 ∆ x ~ 1 = 6 3 2 2 2 1 - 7 - 5 - 3 = - 1 , x ~ 1 = ∆ x ~ 1 ∆ = - 1 - 1 = 1 ∆ x ~ 2 = 1 6 2 - 1 2 1 1 - 7 - 3 = - 1 , x ~ 2 = ∆ x ~ 2 ∆ = - 1 - 1 = 1 ∆ x ~ 3 = 1 3 6 - 1 2 2 1 - 5 - 7 = - 1 , x ~ 3 = ∆ x ~ 3 ∆ = - 1 - 1 = 1

Так, вектор x → в базисе e (1) , e (2) , e (3) имеет координаты x ~ 1 = 1 , x ~ 2 = 1 , x ~ 3 = 1 .

Ответ: x = (1 , 1 , 1)

Связь между базисами

Предположим, что в некотором базисе n-мерного векторного пространства даны две линейно независимые системы векторов:

c (1) = (c 1 (1) , c 2 (1) , . . . , c n (1)) c (2) = (c 1 (2) , c 2 (2) , . . . , c n (2)) ⋮ c (n) = (c 1 (n) , e 2 (n) , . . . , c n (n))

e (1) = (e 1 (1) , e 2 (1) , . . . , e n (1)) e (2) = (e 1 (2) , e 2 (2) , . . . , e n (2)) ⋮ e (n) = (e 1 (n) , e 2 (n) , . . . , e n (n))

Указанные системы являются также базисами заданного пространства.

Пусть c ~ 1 (1) , c ~ 2 (1) , . . . , c ~ n (1) - координаты вектора c (1) в базисе e (1) , e (2) , . . . , e (3) , тогда связь координат будет задаваться системой линейных уравнений:

с 1 (1) = c ~ 1 (1) e 1 (1) + c ~ 2 (1) e 1 (2) + . . . + c ~ n (1) e 1 (n) с 2 (1) = c ~ 1 (1) e 2 (1) + c ~ 2 (1) e 2 (2) + . . . + c ~ n (1) e 2 (n) ⋮ с n (1) = c ~ 1 (1) e n (1) + c ~ 2 (1) e n (2) + . . . + c ~ n (1) e n (n)

В виде матрицы систему можно отобразить так:

(c 1 (1) , c 2 (1) , . . . , c n (1)) = (c ~ 1 (1) , c ~ 2 (1) , . . . , c ~ n (1)) · e 1 (1) e 2 (1) … e n (1) e 1 (2) e 2 (2) … e n (2) ⋮ ⋮ ⋮ ⋮ e 1 (n) e 2 (n) … e n (n)

Сделаем по аналогии такую же запись для вектора c (2) :

(c 1 (2) , c 2 (2) , . . . , c n (2)) = (c ~ 1 (2) , c ~ 2 (2) , . . . , c ~ n (2)) · e 1 (1) e 2 (1) … e n (1) e 1 (2) e 2 (2) … e n (2) ⋮ ⋮ ⋮ ⋮ e 1 (n) e 2 (n) … e n (n)

(c 1 (n) , c 2 (n) , . . . , c n (n)) = (c ~ 1 (n) , c ~ 2 (n) , . . . , c ~ n (n)) · e 1 (1) e 2 (1) … e n (1) e 1 (2) e 2 (2) … e n (2) ⋮ ⋮ ⋮ ⋮ e 1 (n) e 2 (n) … e n (n)

Матричные равенства объединим в одно выражение:

c 1 (1) c 2 (1) ⋯ c n (1) c 1 (2) c 2 (2) ⋯ c n (2) ⋮ ⋮ ⋮ ⋮ c 1 (n) c 2 (n) ⋯ c n (n) = c ~ 1 (1) c ~ 2 (1) ⋯ c ~ n (1) c ~ 1 (2) c ~ 2 (2) ⋯ c ~ n (2) ⋮ ⋮ ⋮ ⋮ c ~ 1 (n) c ~ 2 (n) ⋯ c ~ n (n) · e 1 (1) e 2 (1) ⋯ e n (1) e 1 (2) e 2 (2) ⋯ e n (2) ⋮ ⋮ ⋮ ⋮ e 1 (n) e 2 (n) ⋯ e n (n)

Оно и будет определять связь векторов двух различных базисов.

Используя тот же принцип, возможно выразить все векторы базиса e (1) , e (2) , . . . , e (3) через базис c (1) , c (2) , . . . , c (n) :

e 1 (1) e 2 (1) ⋯ e n (1) e 1 (2) e 2 (2) ⋯ e n (2) ⋮ ⋮ ⋮ ⋮ e 1 (n) e 2 (n) ⋯ e n (n) = e ~ 1 (1) e ~ 2 (1) ⋯ e ~ n (1) e ~ 1 (2) e ~ 2 (2) ⋯ e ~ n (2) ⋮ ⋮ ⋮ ⋮ e ~ 1 (n) e ~ 2 (n) ⋯ e ~ n (n) · c 1 (1) c 2 (1) ⋯ c n (1) c 1 (2) c 2 (2) ⋯ c n (2) ⋮ ⋮ ⋮ ⋮ c 1 (n) c 2 (n) ⋯ c n (n)

Дадим следующие определения:

Определение 5

Матрица c ~ 1 (1) c ~ 2 (1) ⋯ c ~ n (1) c ~ 1 (2) c ~ 2 (2) ⋯ c ~ n (2) ⋮ ⋮ ⋮ ⋮ c ~ 1 (n) c ~ 2 (n) ⋯ c ~ n (n) является матрицей перехода от базиса e (1) , e (2) , . . . , e (3)

к базису c (1) , c (2) , . . . , c (n) .

Определение 6

Матрица e ~ 1 (1) e ~ 2 (1) ⋯ e ~ n (1) e ~ 1 (2) e ~ 2 (2) ⋯ e ~ n (2) ⋮ ⋮ ⋮ ⋮ e ~ 1 (n) e ~ 2 (n) ⋯ e ~ n (n) является матрицей перехода от базиса c (1) , c (2) , . . . , c (n)

к базису e (1) , e (2) , . . . , e (3) .

Из этих равенств очевидно, что

c ~ 1 (1) c ~ 2 (1) ⋯ c ~ n (1) c ~ 1 (2) c ~ 2 (2) ⋯ c ~ n (2) ⋮ ⋮ ⋮ ⋮ c ~ 1 (n) c ~ 2 (n) ⋯ c ~ n (n) · e ~ 1 (1) e ~ 2 (1) ⋯ e ~ n (1) e ~ 1 (2) e ~ 2 (2) ⋯ e ~ n (2) ⋮ ⋮ ⋮ ⋮ e ~ 1 (n) e ~ 2 (n) ⋯ e ~ n (n) = 1 0 ⋯ 0 0 1 ⋯ 0 ⋮ ⋮ ⋮ ⋮ 0 0 ⋯ 1 e ~ 1 (1) e ~ 2 (1) ⋯ e ~ n (1) e ~ 1 (2) e ~ 2 (2) ⋯ e ~ n (2) ⋮ ⋮ ⋮ ⋮ e ~ 1 (n) e ~ 2 (n) ⋯ e ~ n (n) · c ~ 1 (1) c ~ 2 (1) ⋯ c ~ n (1) c ~ 1 (2) c ~ 2 (2) ⋯ c ~ n (2) ⋮ ⋮ ⋮ ⋮ c ~ 1 (n) c ~ 2 (n) ⋯ c ~ n (n) = 1 0 ⋯ 0 0 1 ⋯ 0 ⋮ ⋮ ⋮ ⋮ 0 0 ⋯ 1

т.е. матрицы перехода взаимообратны.

Рассмотрим теорию на конкретном примере.

Пример 7

Исходные данные: необходимо найти матрицу перехода от базиса

c (1) = (1 , 2 , 1) c (2) = (2 , 3 , 3) c (3) = (3 , 7 , 1)

e (1) = (3 , 1 , 4) e (2) = (5 , 2 , 1) e (3) = (1 , 1 , - 6)

Также нужно указать связь координат произвольного вектора x → в заданных базисах.

Решение

1. Пусть T – матрица перехода, тогда верным будет равенство:

3 1 4 5 2 1 1 1 1 = T · 1 2 1 2 3 3 3 7 1

Умножим обе части равенства на

1 2 1 2 3 3 3 7 1 - 1

и получим:

T = 3 1 4 5 2 1 1 1 - 6 · 1 2 1 2 3 3 3 7 1 - 1

2. Определим матрицу перехода:

T = 3 1 4 5 2 1 1 1 - 6 · 1 2 1 2 3 3 3 7 1 - 1 = = 3 1 4 5 2 1 1 1 - 6 · - 18 5 3 7 - 2 - 1 5 - 1 - 1 = - 27 9 4 - 71 20 12 - 41 9 8

3. Определим связь координат вектора x → :

допустим, что в базисе c (1) , c (2) , . . . , c (n) вектор x → имеет координаты x 1 , x 2 , x 3 , тогда:

x = (x 1 , x 2 , x 3) · 1 2 1 2 3 3 3 7 1 ,

а в базисе e (1) , e (2) , . . . , e (3) имеет координаты x ~ 1 , x ~ 2 , x ~ 3 , тогда:

x = (x ~ 1 , x ~ 2 , x ~ 3) · 3 1 4 5 2 1 1 1 - 6

Т.к. равны левые части этих равенств, мы можем приравнять и правые:

(x 1 , x 2 , x 3) · 1 2 1 2 3 3 3 7 1 = (x ~ 1 , x ~ 2 , x ~ 3) · 3 1 4 5 2 1 1 1 - 6

Умножим обе части справа на

1 2 1 2 3 3 3 7 1 - 1

и получим:

(x 1 , x 2 , x 3) = (x ~ 1 , x ~ 2 , x ~ 3) · 3 1 4 5 2 1 1 1 - 6 · 1 2 1 2 3 3 3 7 1 - 1 ⇔ ⇔ (x 1 , x 2 , x 3) = (x ~ 1 , x ~ 2 , x ~ 3) · T ⇔ ⇔ (x 1 , x 2 , x 3) = (x ~ 1 , x ~ 2 , x ~ 3) · - 27 9 4 - 71 20 12 - 41 9 8

С другой стороны

(x ~ 1 , x ~ 2 , x ~ 3) = (x 1 , x 2 , x 3) · - 27 9 4 - 71 20 12 - 41 9 8

Последние равенства показывают связь координат вектора x → в обоих базисах.

Ответ: матрица перехода

27 9 4 - 71 20 12 - 41 9 8

Координаты вектора x → в заданных базисах связаны соотношением:

(x 1 , x 2 , x 3) = (x ~ 1 , x ~ 2 , x ~ 3) · - 27 9 4 - 71 20 12 - 41 9 8

(x ~ 1 , x ~ 2 , x ~ 3) = (x 1 , x 2 , x 3) · - 27 9 4 - 71 20 12 - 41 9 8 - 1

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Пример 8

Даны векторы . Показать, что векторы образуют базис трехмерного пространства и найти координаты вектора в этом базисе.

Решение: Сначала разбираемся с условием. По условию даны четыре вектора, и, как видите, у них уже есть координаты в некотором базисе. Какой это базис – нас не интересует. А интересует следующая вещь: три вектора вполне могут образовывать новый базис. И первый этап полностью совпадает с решением Примера 6, необходимо проверить, действительно ли векторы линейно независимы:

Вычислим определитель, составленный из координат векторов :

, значит, векторы линейно независимы и образуют базис трехмерного пространства.

! Важно : координаты векторов обязательно записываем в столбцы определителя, а не в строки. Иначе будет путаница в дальнейшем алгоритме решения.

Теперь вспомним теоретическую часть: если векторы образуют базис, то любой вектор можно единственным способом разложить по данному базису: , где – координаты вектора в базисе .

Поскольку наши векторы образуют базис трёхмерного пространства (это уже доказано), то вектор можно единственным образом разложить по данному базису:
, где – координаты вектора в базисе .

По условию и требуется найти координаты .

Для удобства объяснения поменяю части местами: . В целях нахождения следует расписать данное равенство покоординатно:

По какому принципу расставлены коэффициенты? Все коэффициенты левой части в точности перенесены из определителя , в правую часть записаны координаты вектора .

Получилась система трёх линейных уравнений с тремя неизвестными. Обычно её решают поформулам Крамера , часто даже в условии задачи есть такое требование.

Главный определитель системы уже найден:
, значит, система имеет единственное решение.

Дальнейшее – дело техники:

Таким образом:
– разложение вектора по базису .

Ответ:

Как я уже отмечал, задача носит алгебраический характер. Векторы, которые были рассмотрены – это не обязательно те векторы, которые можно нарисовать в пространстве, а, в первую очередь, абстрактные векторы курса линейной алгебры. Для случая двумерных векторов можно сформулировать и решить аналогичную задачу, решение будет намного проще. Однако на практике мне такое задание ни разу не встречалось, именно поэтому я его пропустил в предыдущем разделе.

Такая же задача с трёхмерными векторами для самостоятельного решения:

Пример 9

Даны векторы . Показать, что векторы образуют базис и найти координаты вектора в этом базисе. Систему линейных уравнений решить методом Крамера.

Полное решение и примерный образец чистового оформления в конце урока.

Аналогично можно рассмотреть четырёхмерное, пятимерное и т.д. векторные пространства, где у векторов соответственно 4, 5 и более координат. Для данных векторных пространств тоже существует понятие линейной зависимости, линейной независимости векторов, существует базис, в том числе, ортонормированный, разложение вектора по базису. Да, такие пространства невозможно нарисовать геометрически, но в них работают все правила, свойства и теоремы двух и трех мерных случаев – чистая алгебра. Собственно, о философских вопросах меня уже пробивало поговорить в статье Частные производные функции трёх переменных , которая появилась раньше данного урока.

Любите векторы, и векторы полюбят вас!

Решения и ответы:

Пример 2: Решение : составим пропорцию из соответствующих координат векторов:

Ответ: при

Пример 4: Доказательство : Трапецией называется четырёхугольник, у которого две стороны параллельны, а две другие стороны не параллельны.
1) Проверим параллельность противоположных сторон и .
Найдём векторы:


, значит, данные векторы не коллинеарны, и стороны не параллельны.
2) Проверим параллельность противоположных сторон и .
Найдём векторы:

Вычислим определитель, составленный из координат векторов :
, значит, данные векторы коллинеарны, и .
Вывод: Две стороны четырёхугольника параллельны, а две другие стороны не параллельны, значит, он является трапецией по определению. Что и требовалось доказать .

Пример 5: Решение :
б) Проверим, существует ли коэффициент пропорциональности для соответствующих координат векторов:

Система не имеет решения, значит, векторы не коллинеарны.
Более простое оформление:
– вторая и третья координаты не пропорциональны, значит, векторы не коллинеарны.
Ответ: векторы не коллинеарны.
в) Исследуем на коллинеарность векторы . Составим систему:

Соответствующие координаты векторов пропорциональны, значит
Вот здесь как раз не проходит «пижонский» метод оформления.
Ответ:

Пример 6: Решение : б) Вычислим определитель, составленный из координат векторов (определитель раскрыт по первой строке):

, значит, векторы линейно зависимы и не образуют базиса трёхмерного пространства.
Ответ : данные векторы не образуют базиса

Пример 9:Решение: Вычислим определитель, составленный из координат векторов :


Таким образом, векторы линейно независимы и образуют базис.
Представим вектор в виде линейной комбинации базисных векторов:

Покоординатно:

Систему решим по формулам Крамера:
, значит, система имеет единственное решение.



Ответ: Векторы образуют базис,

Высшая математика для заочников и не только >>>

(Переход на главную страницу)

Векторное произведение векторов.
Смешанное произведение векторов

На данном уроке мы рассмотрим ещё две операции с векторами: векторное произведение векторов и смешанное произведение векторов . Ничего страшного, так иногда бывает, что для полного счастья, помимо скалярного произведения векторов , требуется ещё и ещё. Такая вот векторная наркомания. Может сложиться впечатление, что мы залезаем в дебри аналитической геометрии. Это не так. В данном разделе высшей математики вообще мало дров, разве что на Буратино хватит. На самом деле материал очень распространенный и простой – вряд ли сложнее, чем то же скалярное произведение , даже типовых задач поменьше будет. Главное в аналитической геометрии, как многие убедятся или уже убедились, НЕ ОШИБАТЬСЯ В ВЫЧИСЛЕНИЯХ. Повторяйте как заклинание, и будет вам счастье =)

Если векторы сверкают где-то далеко, как молнии на горизонте, не беда, начните с урокаВекторы для чайников , чтобы восстановить или вновь приобрести базовые знания о векторах. Более подготовленные читатели могут знакомиться с информацией выборочно, я постарался собрать максимально полную коллекцию примеров, которые часто встречаются в практических работах

Чем вас сразу порадовать? Когда я был маленьким, то умел жонглировать двумя и даже тремя шариками. Ловко получалось. Сейчас жонглировать не придётся вообще, поскольку мы будем рассматривать только пространственные векторы , а плоские векторы с двумя координатами останутся за бортом. Почему? Такими уж родились данные действия – векторное и смешанное произведение векторов определены и работают в трёхмерном пространстве. Уже проще!

В геометрии вектор понимается как направленный отрезок, причем векторы, полученные один из другого параллельным переносом, считаются равными. Все равные векторы рассматриваются как один и тот же вектор. Начало вектора можно поместить в любую точку пространства или плоскости.

Если в пространстве заданы координаты концов вектора : A (x 1 , y 1 , z 1), B (x 2 , y 2 , z 2), то

= (x 2 – x 1 , y 2 – y 1 , z 2 – z 1). (1)

Аналогичная формула имеет место на плоскости. Это значит, что вектор можно записать в виде координатной строки. Операции над векторами, – сложение и умножение на число, над строками выполняются покомпонентно. Это дает возможность расширить понятие вектора, понимая под вектором любую строку чисел. Например, решение системы линейных уравнений, а также любой набор значений переменных системы, можно рассматривать как вектор.

Над строками одинаковой длины операция сложения выполняется по правилу

(a 1 , a 2 , … , a n ) + (b 1 , b 2 , … , b n ) = (a 1 + b 1 , a 2 + b 2 , … , a n + b n ). (2)

Умножение строки на число выполняется по правилу

l(a 1 , a 2 , … , a n ) = (la 1 , la 2 , … , la n ). (3)

Множество векторов-строк заданной длины n с указанными операциями сложения векторов и умножения на число образует алгебраическую структуру, которая называется n-мерным линейным пространством .

Линейной комбинацией векторов называется вектор , где λ 1 , ... , λ m – произвольные коэффициенты.

Система векторов называется линейно зависимой, если существует ее линейная комбинация, равная , в которой есть хотя бы один ненулевой коэффициент.

Система векторов называется линейно независимой, если в любой ее линейной комбинации, равной , все коэффициенты нулевые.

Таким образом, решение вопроса о линейной зависимости системы векторов сводится к решению уравнения

x 1 + x 2 + … + x m = . (4)

Если у этого уравнения есть ненулевые решения, то система векторов линейно зависима. Если же нулевое решение является единственным, то система векторов линейно независима.

Для решения системы (4) можно для наглядности векторы записать не в виде строк, а в виде столбцов.

Тогда, выполнив преобразования в левой части, придем к системе линейных уравнений, равносильной уравнению (4). Основная матрица этой системы образована координатами исходных векторов, расположенных по столбцам. Столбец свободных членов здесь не нужен, так как система однородная.

Базисом системы векторов (конечной или бесконечной, в частности, всего линейного пространства) называется ее непустая линейно независимая подсистема, через которую можно выразить любой вектор системы.

Пример 1.5.2. Найти базис системы векторов = (1, 2, 2, 4), = (2, 3, 5, 1), = (3, 4, 8, –2), = (2, 5, 0, 3) и выразить остальные векторы через базис.

Решение . Строим матрицу, в которой координаты данных векторов располагаем по столбцам. Это матрица системы x 1 + x 2 + x 3 + x 4 =. . Приводим матрицу к ступенчатому виду:

~ ~ ~

Базис данной системы векторов образуют векторы , , , которым соответствуют ведущие элементы строк, выделенные кружками. Для выражения вектора решаем уравнение x 1 + x 2 + x 4 = . Оно сводится к системе линейных уравнений, матрица которой получается из исходной перестановкой столбца, соответствующего , на место столбца свободных членов. Поэтому при приведении к ступенчатому виду над матрицей будут сделаны те же преобразования, что выше. Значит, можно использовать полученную матрицу в ступенчатом виде, сделав в ней необходимые перестановки столбцов: столбцы с кружками помещаем слева от вертикальной черты, а столбец, соответствующий вектору , помещаем справа от черты.

Последовательно находим:

x 4 = 0;

x 2 = 2;

x 1 + 4 = 3, x 1 = –1;

Замечание . Если требуется выразить через базис несколько векторов, то для каждого из них строится соответствующая система линейных уравнений. Эти системы будут отличаться только столбцами свободных членов. При этом каждая система решается независимо от остальных.

У п р а ж н е н и е 1.4. Найти базис системы векторов и выразить остальные векторы через базис:

а) = (1, 3, 2, 0), = (3, 4, 2, 1), = (1, –2, –2, 1), = (3, 5, 1, 2);

б) = (2, 1, 2, 3), = (1, 2, 2, 3), = (3, –1, 2, 2), = (4, –2, 2, 2);

в) = (1, 2, 3), = (2, 4, 3), = (3, 6, 6), = (4, –2, 1); = (2, –6, –2).

В заданной системе векторов базис обычно можно выделить разными способами, но во всех базисах будет одинаковое число векторов. Число векторов в базисе линейного пространства называется размерностью пространства. Для n -мерного линейного пространства n – это размерность пространства, так как это пространство имеет стандартный базис = (1, 0, … , 0), = (0, 1, … , 0), … , = (0, 0, … , 1). Через этот базис любой вектор = (a 1 , a 2 , … , a n ) выражается следующим образом:

= (a 1 , 0, … , 0) + (0, a 2 , … , 0) + … + (0, 0, … , a n ) =

A 1 (1, 0, … , 0) + a 2 (0, 1, … , 0) + … + a n (0, 0, … ,1) = a 1 + a 2 +… + a n .

Таким образом, компоненты в строке вектора = (a 1 , a 2 , … , a n ) – это его коэффициенты в разложении через стандартный базис.

Прямые на плоскости

Задача аналитической геометрии – применение к геометрическим задачам координатного метода. Тем самым задача переводится в алгебраическую форму и решается средствами алгебры.

Найти базис системы векторов и векторы, не входящие в базис, разложить по базису:

а 1 = {5, 2, -3, 1}, а 2 = {4, 1, -2, 3}, а 3 = {1, 1, -1, -2}, а 4 = {3, 4, -1, 2}, а 5 = {13, 8, -7, 4}.

Р е ш е н и е . Рассмотрим однородную систему линейных уравнений

а 1 х 1 + а 2 х 2 + а 3 х 3 + а 4 х 4 + а 5 х 5 = 0

или в развернутом виде .

Будем решать эту систему методом Гаусса, не меняя местами строки и столбцы, и, кроме того, выбирая главный элемент не в верхнем левом углу, а по всей строке. Задача состоит в том, чтобы выделить диагональную часть преобразованной системы векторов .

~ ~

~ ~ ~ .

Разрешенная система векторов, равносильная исходной, имеет вид

а 1 1 х 1 + а 2 1 х 2 + а 3 1 х 3 + а 4 1 х 4 + а 5 1 х 5 = 0 ,

где а 1 1 = , а 2 1 = , а 3 1 = , а 4 1 = , а 5 1 = . (1)

Векторы а 1 1 , а 3 1 , а 4 1 образуют диагональную систему. Следовательно, векторы а 1 , а 3 , а 4 образуют базис системы векторов а 1 , а 2 , а 3 , а 4 , а 5 .

Разложим теперь векторы а 2 и а 5 по базису а 1 , а 3 , а 4 . Для этого сначала разложим соответствующие векторы а 2 1 и а 5 1 по диагональной системе а 1 1 , а 3 1 , а 4 1 , имея в виду, что коэффициентами разложения вектора по диагональной системе являются его координаты x i .

Из (1) имеем:

а 2 1 = а 3 1 · (-1) + а 4 1 · 0 + а 1 1 ·1 => а 2 1 = а 1 1 – а 3 1 .

а 5 1 = а 3 1 · 0 + а 4 1 · 1 + а 1 1 ·2 => а 5 1 = 2а 1 1 + а 4 1 .

Векторы а 2 и а 5 разлагаются по базису а 1 , а 3 , а 4 с теми же коэффициентами, что и векторы а 2 1 и а 5 1 по диагональной системе а 1 1 , а 3 1 , а 4 1 (те коэффициенты x i ). Следовательно,

а 2 = а 1 – а 3 , а 5 = 2а 1 + а 4 .

Задания. 1 .Найти базис системы векторов и векторы, не входящие в базис, разложить по базису:

1. a 1 = { 1, 2, 1 }, a 2 = { 2, 1, 3 }, a 3 = { 1, 5, 0 }, a 4 = { 2, -2, 4 }.

2. a 1 = { 1, 1, 2 }, a 2 = { 0, 1, 2 }, a 3 = { 2, 1, -4 }, a 4 = { 1, 1, 0 }.

3. a 1 = { 1, -2, 3 }, a 2 = { 0, 1, -1 }, a 3 = { 1, 3, 0 }, a 4 = { 0, -7, 3 }, a 5 = { 1, 1, 1 }.

4. a 1 = { 1, 2, -2 }, a 2 = { 0, -1, 4 }, a 3 = { 2, -3, 3 }.

2. Найти все базисы системы векторов:

1. a 1 = { 1, 1, 2 }, a 2 = { 3, 1, 2 }, a 3 = { 1, 2, 1 }, a 4 = { 2, 1, 2 }.

2. a 1 = { 1, 1, 1 }, a 2 = { -3, -5, 5 }, a 3 = { 3, 4, -1 }, a 4 = { 1, -1, 4 }.

Похожие публикации