Основы пенного тушения: пены, пенообразователи, смачиватели, их назначение, виды, состав, физико-химические свойства и область применения. Меры безопасности при работе с пенообразователями. Воздушно-механической пены В чем достоинства воздушно механическо

Тема Назначение виды и устройство оборудования для получения воздушно-механической пены

Вид занятия : классно-групповое

Отводимое время : 1 учебный час.

Литература: учебник «Пожарная техника»

Развернутый план занятий.

Пенообразователи общего назначения изготовляются на основе дешевого и доступного сырья. Используются для получения пены и растворов смачивателей.

Предназначены для тушения пожаров нефтепродуктов, дерева, ткани, бумаги, торфа, хлопка, каучука, пластмасс и т.д. Служат для получения пены низкой, средней кратности и высокой.

К ним относятся:

  • ТЭАС – А

Преобразователи целевого назначения

Пенообразователи целевого назначения используются для получения пены, при тушении пожаров нефтепродуктов и различных классов горючих жидкостей наиболее пожароопасных объектов, а также для применения с морской водой, при низкой температуре и других особых условиях. Некоторые из них изготавливаются на основе дефицитного дорогостоящего сырья.

К ним относятся:

    Пленкообразующий

  • Универсальный

Физико-химические и огнетушащие свойства пен.

Огнетушащие пены разделяются на химическую и воздушно - механическую.

Химическая пена (кратность до 6)получают в результате химической реакции между кислой и щелочной частями:

Fe2(S04)3+6NaHC03-)-3Na2S04+2Fe(OH)3+6C02

H 2 S 04+2 NaHC 03-> Na 2 S 04+2 C 02+2 H 20

Воздушно - механическая пена получается путем механического перемещения трех компонентов: воды, пенообразователя и воздуха.

Согласно ГОСТ 12.1.114-82 ВМП подразделяется на три вида:

    ВМП низкой кратности К<20 (для расчетов К=10) ВМП

    средней кратности 20^К^200 (для расчетов К=100)

    ВМП высокой кратности К>200 (для расчетов К=1000)

Физико-химические и огнетушащие свойства пен и область их применения .

Огнетушащие пены представляют собой совокупность пузырьков ,

состоящих из

жидкостной оболочки, заполненной воздухом или газами, т.е. пена - это

концентрированная эмульсия газа и в жидкости.

Химическая пена состоит на 80% С02 (углекислого газа) , 19,7% водного раствора и 0,3% пенообразующих веществ.

ВМП состоит из 83-99,6% воздуха и 0,4-17% водного раствора ПО.

Основными свойствами пен независимо от способа их получения являются следующие:

1. Кратность пены - это отношение объема пены к объему пенообразующей жидкости. Кратность зависит от типа, качества и концентрации ПО в воде, от конструкции пенного прибора, от напора перед распылителем и от температуры подсасываемого воздуха.

2. Стойкость пены - это способность противостоять разрушению в течении определенного времени. Стойкость пены - это время в течении которого пена разрушается на 50% первоначального объема. Стойкость зависит: от вида ПО, свойств и температуры веществ, с которыми она взаимодействует, способа подачи, высоты пенного слоя. т=3,8-18мин (САМПО - несколько часов)

3. Высокая теплоемкость - пена, разрушаясь, охлаждает горящие вещества (строительные конструкции, ЛВЖ и ГЖ) за счет имеющегося в ее структуре водного раствора пенообразователя.

4. Небольшая плотность 4-170 кг/м 3 . Плотность зависит от кратности пены, Пена плавает на поверхности жидкостей, не создает чрезмерной нагрузки на покрытия, исключает потерю устойчивости судна при тушении пожаров.

5. Низкая теплопроводность - она близка к теплопроводности неподвижных газов. Это позволяет использовать пену в качестве теплоизоляционного экрана от действия лучистой энергии.

6.Изолирующая способность - при тушении пеной, слой пены препятствует проникновению паров в зону горения и тепла из зоны горения к поверхности вещества.

7. Вязкост ь - способность пены к растеканию.

8. Дисперстность - степень измельчения т.е. размеры пузырьков. С увеличением дисперстности пены, растет время ее существования, вязкость и парогазонепроницаемость.

Способ получения пен и предназначение для пожаротушения:

    Пена низкой кратности – стволы СВЭ; СВПЭ; ОРТ-50 с насадкой – тушение хлопка и родственных веществ, так же применяется для тушения резина образных изделий и паралона.

    Пена средней кратности – ГПС-600; ГПС-800; ГПС – 2000 – тушение ЛВЖ.

    Пена высокой кратности - получается ТОЛЬКО при помощи пожарного дымососа. Тушение объемных пожаров (подвалы). В этой пене можно дышать .

Схемы боевого развертывания с подачей ВМП

Газовые составы применяют для тушения большинства горючих жидкостей, газов, твердых веществ (за исключением щелочных металлов, алюминийорганических соединений, а также материалов, способных к длительному тлению).

Углекислый газ применяют для тушения огня в закрытых помещениях или труднодоступных местах. При введении 25-30 % СО 2 (по объему) в горящее помещение горение прекращается. При тушении открытых пожаров (вне помещения) и электроустановок, находящихся под напряжением, применяют твердый диоксид углерода (снегообразную углекислоту), который, испаряясь, охлаждает горящий объект и снижает процентное содержание углерода в зоне горения, благодаря чему пожар ликвидируется.

Инертные газы (азот, аргон, гелий), дымовые и отработанные газы применяют для тушения пожаров в резервуарах и закрытых помещениях. Огнетушащая концентрация инертных газов составляет 31-36 % по объему.

Галоидированные углеводороды ) являются высокоэффективным средством пожаротушения. Огнетушащее действие их основано на торможении химических реакций горения. Большинство галоидированных углеводородов обладает хорошими смачивающими свойствами, что имеет важное значение при тушении тлеющих материалов, а низкие температуры их замерзания позволяют использовать эти составы при низких температурах воздуха. Некоторые сведения о галоидированных углеводородах приведены в табл. 2.



Таблица 2

Характеристика галоидированных углеводородов

Огнетушащие порошки находят все более широкое применение в практике пожаротушения. Огнетушащие порошковые составы ПСБ, ПФ, ПС-1, СИ-2 являются мелкодисперсными системами, состоящими из твердых частиц со сложным химическим составом. Огнетушащая способность порошков зависит от химической природы компонентов, их гранулометрического состава, влажности, текучести, насыпной массы и т.д. Порошки, как правило, не токсичны и не электропроводны. Тушение пожара порошками общего назначения (ПСБ, ПФ) достигается созданием плотного облака в зоне всего очага пожара. При тушении порошковыми составами ПС-1 горящих материалов и составами СИ-2 пирофорных жидкостей подача порошка осуществляется путем нанесения слоя порошка на всю горящую поверхность для полной изоляции последней от кислорода воздуха. Недостатком огнетушащих порошков является их низкая охлаждающая способность, поэтому при порошковом тушении возможны повторные вспышки от раскаленных в огне предметов, что заставляет применять совместно с порошками другие огнетушащие вещества. Основные характеристики порошков и область их применения приведены в табл. 3.

Таблица 3

Характеристика огнетушащих порошков

Наименование порошков Состав порошка по основному компоненту Влажность, % Насыпная масса, г/см 2 Область применения
ПСБ Бикарбонат натрия с добавками < 0,5 0,9-1,2 Тушение газов; разлившихся жидкостей; электроустановок, находящихся под напряжением
ПФ Фосфорноаммонийные соли с добавками < 0,5 0,8-09 То же и тушение древесины
ПС-1 Углекислый натрий с добавками < 0,5 0,9-1,3 Тушение щелочных металлов, натрия, калия и сплавов
СИ-2 Силикагель и наполнитель - 0,9 Тушение нефтепродуктов и пирофорных жидкостей

Песок и бишофит относятся к группе огнегасящих порошков природного происхождения.

Песок является наиболее эффективным при тушении открытых пожаров. Однако необходимо помнить, что даже сухой песок может реагировать с горящим материалом и усиливать горение. При значительных размерах пожара происходит реакция разложения песка с образованием свободного кремния и кремнистых соединений; последние реагируют с влагой, в результате чего образуются горючие и ядовитые газы.

Бишофит – материал в виде кристаллического порошка розового или сиреневого цвета. В состав бишофита входят соли неорганических веществ; содержание активных веществ в порошке бишофита составляет 50-55 %, остальное – кристаллизационная сода. Бишофит добывают способом подземного выщелачивания в виде концентрированного 40-процентного раствора (хлормагниевый рассол).

Горючие материалы, обработанные раствором бишофита, теряют способность гореть на длительное время (до выпадения осадков). Практика применения бишофита показывает, что слабощелочной раствор этого материала может быть с успехом использован для создания огнестойких полос вдоль дорог, лесов, стоянок, огнеопасных производств и т.д.

В общем случае выбор огнетушащих средств зависит от класса пожара. В настоящее время все пожары подразделяют на пять классов: А, В, С, Д, Е (табл. 4).

Таблица 4

Класс пожара Характеристика горючей среды или объекта Огнетушащие средства
А Обычные твердые горючие материалы (дерево, уголь, бумага, резина и др.) Все виды огнетушащих средств (прежде всего вода)
В Горючие жидкости и плавящиеся при нагревании материалы (мазут, бензин, лак, масла и др.) Распыленная вода, все виды пен, составы на основе галоидалкилов, порошки
С Горючие газы (водород, ацетилен, углеводороды) Газовые составы, инертные газы, галоидоуглеводороды, порошки
Д Металлы и их сплавы (калий, натрий, алюминий, магний и др.) Порошки (при спокойной подаче на горящую поверхность)
Е Электроустановки, находящиеся под напряжением Галоидоуглеводороды, диоксид углерода, порошки

ОГНЕТУШИТЕЛИ

Огнетушители являются надежным средством при тушении загораний и небольших пожаров. Огнетушители бывают стационарные, ручные, ранцевые и передвижные.

По размеру и количеству огнетушащего вещества все огнетушители подразделяются на три группы: малолитражные ручные с объемом корпуса до 5 л; промышленные ручные с объемом корпуса до 10 л; передвижные и стационарные с объемом корпуса 25 и более литров.

По виду огнетушащего состава огнетушители подразделяются на пять групп: химические пенные; воздушно-пенные; углекислотные; жидкостные химические; порошковые.

2.1. ХИМИЧЕСКИЕ ПЕННЫЕ ОГНЕТУШИТЕЛИ

Огнетушащими средствами химических пенных огнетушителей являются вещества, при взаимодействии которых образуется химическая пена.

Огнетушащий заряд этих огнетушителей состоит из двух частей: кислотной и щелочной. Кислотная часть содержит сернокислое окисное железо Fe 2 (SO 4) 3 и серную кислоту H 2 SO 4 . Щелочная часть представлена водным раствором бикарбоната натрия NaHCO 3 с солодковым экстрактом. Солодковый экстракт, являющийся продуктом переработки солодкового корня (произрастает в некоторых районах СНГ), выполняет роль поверхностно-активного вещества (вспенивателя).

Химическая реакция взаимодействия кислотной и щелочной частей, в результате которой образуется пена, протекает по следующей схеме:

2NaHCO 3 + H 2 SO 4 ↔ Na 2 SO 4 + 2CO 2 ;

6NaHCO 3 + Fe 2 (SO 4) 3 ↔ 3Na 2 SO 4 + 2Fe(OH) 3 + 6CO 2 .

Получаемый состав химической пены включает 80 % CO 2 ; 19,7 % водного раствора и 0,3 % пенообразующего вещества.

В настоящее время промышленность выпускает химический пенный огнетушитель ОП-9ММ; густопенный химический огнетушитель марки ОП-М; химический воздушно-пенный огнетушитель ОХВП-10 и наиболее распространенные химические пенные огнетушители марки ОХП-10 и ОП-5. Кроме перечисленных на промышленных предприятиях используют значительное количество ранее выпущенных пенных огнетушителей ОП-3.

Огнетушитель ОХП-10 . Огнетушитель предназначен для тушения очагов пожара твердых материалов, а также различных горючих жидкостей на площади не более 1 м 2 .

Техническая характеристика ОХП-10:

Емкость корпуса, л 8,75

В том числе:

объем щелочной части 8,3

объем кислотной части 0,45

Масса огнетушителя с зарядом, кг 14

Количество образующейся пены, л 44

Время действия огнетушителя, с 60

Дальность подачи струи пены, м не более 6

Температура устойчивой работы огнетушителя, °С 5-45

Габаритные размеры, мм:

диаметр корпуса 148

высота 745

Огнетушитель ОХП-10 (рис. 1) представляет собой стальной сварной баллон 1 , заполненный щелочным раствором. Внутренняя часть баллона покрыта эмалью, защищающей сталь от коррозии. Верхняя часть баллона переходит в горловину 5 , закрывающуюся чугунной крышкой 9 с запорным устройством. Последнее состоит из штока 8 , не конце которого закреплен резиновый клапан (предохранитель) 11 , пружины 6 и рукоятки 7 . Внутри баллона расположен полиэтиленовый кислотный стакан 2 емкостью 0,5 л, горловина которого закрыта резиновым колпаком 11 .

На горловине баллона имеется клапан (спрыск) 10 с мембраной 12 , предотвращающей выход кислоты или раствора щелочи до их полного смешения, при котором давление внутри баллона повышается до 0,5-0,6 МПа. Мембрана выдерживает гидравлическое давление до 0,08-0,14 МПа. Для переноски и удержания огнетушителя имеются боковая 3 и нижняя 14 ручки. На корпусе баллона расположен предохранительный клапан 13 .

Заряд химических пенных огнетушителей ОХП-10 состоит из водного раствора щелочи (бикарбонат натрия) и кислоты (серная кислота).

Заряд химических воздушно-пенных огнетушителей ОХВП-10 состоит из аналогичных веществ, но в щелочную часть ОХВП-10 добавляется пенообразователь (ПО-1, ПО-6к, ПО-ЗАИ и т.п.) для увеличения выхода пены и повышения ее эффективности при тушении.

В результате реакции происходит выделение СО 2 , образование пены и создание в огнетушителе повышенного давления, под действием которого пена струей выбрасывается через клапан (спрыск) 10 наружу. В случае использования пенных огнетушителей в условиях отрицательных температур щелочную часть заряда растворяют в меньшем количестве воды и к полученному раствору добавляют этиленгликоль. В качестве кислотной части используется техническая серная кислота.

Рис. 1. Огнетушитель ОХП-10:

1 - корпус огнетушителя; 2 - кислотный стакан; 3 - предохранительная мембрана;

4 - спрыск; 5 - крышка огнетушителя; 6 - шток; 7 - рукоятка; 8 и 9 - резиновые прокладки; 10 - пружина; 11 - горловина; 12 - верх огнетушителя; 13 - резиновый клапан;

14 - боковая ручка; 15 - днище

Для приведения огнетушителя ОХП-10 (см. рис.1) в действие необходимо:

Взять огнетушитель и, используя боковую ручку, поднести его в вертикальном положении к очагу пожара;

Установить огнетушитель на пол и прочистить спрыск 4 шпилькой (подвешивается к ручке огнетушителя), если он не закрыт предохранительной мембраной 3;

Перевернуть рукоятку 7 на 180° от первоначального положения;

Взяться одной рукой за боковую ручку 14 и приподнять огнетушитель от пола, после чего, придерживая другой рукой огнетушитель за днище, перевернуть его горловиной вниз;

Выходящую струю пены направить на очаг горения твердых веществ или, начиная с ближнего края, покрыть пеной поверхность горящей жидкости.

Для лучшего пенообразования в начальный момент действия огнетушителя рекомендуется встряхнуть его корпус, что обеспечит лучшее взаимодействие кислоты и водного раствора щелочи.

Если во время работы огнетушителя произошло засорение спрыска 4 (рис.1), и прочистить шпилькой его не удалось, необходимо положить огнетушитель в безопасное для персонала место, так как до окончательного снижения давления выходящего газа не исключена опасность разрыва корпуса или срыва крышки горловины с резьбы.

Конструктивно ОХП-10 (рис.1) и ОХВП-10 одинаковы, но их внешнее различие состоит в том, что на ОХВП-10 устанавливается пенный насадок (малогабаритный пеногенератор - рис.1.1) для увеличения кратности выходящей пены.

Рис. 1.1. Пенный насадок:

1 - распылитель; 2 -латунная сетка; 3 - предохранительная мембрана; 4 - корпус насадка; 5 - огнетушитель ОХВП-10

Перезарядка огнетушителей ОХП-10 и ОХВП-10 производится ежегодно. Одновременно осуществляется осмотр корпуса огнетушителя для выявления дефектов.

Огнетушители должны сниматься с эксплуатации при сильной коррозии корпуса, неисправности пускового механизма, сорванной резьбе крышки или горловины корпуса.

2.2. ВОЗДУШНО-ПЕННЫЕ ОГНЕТУШИТЕЛИ

Огнетушители воздушно-пенные используются при тушении пожаров классов А и В (дерево, краски и ГСМ) не допускается применять для тушения электроустановок под напряжением, а также щелочных металлов. Принцип действия огнетушителей основан на использовании энергии сжатого газа для выброса огнетушащего состава с образованием с помощью насадки пены средней кратности. Эксплуатируются при температуре от +5 до +50°С. Перезарядка один раз в год.

Огнетушащими средствами воздушно-пенных огнетушителей является, в основном, водный раствор пенообразователя ПО-1.

Пенообразователь ПО-1 представляет собой темно-коричневую жидкость, состоящую из четырех веществ: керосинового контакта Петрова в количестве 84±3 %, костного клея – 4,5±1 %, синтетического этилового спирта или концентрированного этиленгликоля – 11±1 %, технического едкого натра (сода каустическая).

Для получения воздушно-механической пены используется 4-6 % раствор пенообразователя.

Воздушно-механическая пена образуется в результате перемешивания огнетушащего заряда с воздухом при выходе его из огнетушителя через специальные силовые устройства.

В состав получаемой воздушно-механической пены кратностью 8-10 входит 83-90 % воздуха; 9,5-16,3 % воды; 0,4-0,8 % пенообразователя.

Воздушно-пенные огнетушители выпускаются ручные ОВП-10 (рис.3), передвижные ОВП-100 (рис.4) и стационарно установленные УВП-250 (рис.5) - соответственно на 10; 100 и 250 л объема заряда.

Pис. 3. Ручной воздушно-пенный огнетушитель ОВП-10:

1 - рукав; 2 - пломба; 3 - сифонная трубка; 4 - корпус; 5 - ствол-распылитель;

6 - рукоятка; 7 - кронштейн; 8 - рычаг; 9 - колпак; 10 - предохранительный клапан;

11 -запорно-пусковое ycтpoйcтвo

Рис. 4. Передвижной воздушно-пенный огнетушитель ОВП-100:

1 - корпус огнетушителя; 2 - тележка; 3 - крышка; 4 - пеногенератор;

5 - предохранительный клапан; 6 - запорное устройство; 7 - баллон высокого давления;

8 - резиновый шланг

Рис. 5. Стационарный воздушно-пенный огнетушитель ОВПУ-250 (УВП-250):

1 - резиновый шланг с вращающейся катушкой; 2 - предохранительный клапан;

3 - пеногенератор; 4 - корпус; 5 - пусковой баллон

Эти огнетушители обеспечивают подачу высокократной воздушно-механической пены, огнетушащая эффективность которой в 2,5 раза выше пены химического огнетушителя ОХП-10 при одинаковой емкости. Огнетушители можно использовать при температуре от 5 до 50 °С. По конструкции ОВП-5 и ОВП-10 идентичны и отличаются друг от друга, в основном, геометрическими размерами корпуса.

Огнетушитель ОВП (рис. 3) состоит из стального корпуса 1 , баллона 8 для выталкивания газа (СО 2), крышки 4 с запорно-пусковым устройством, сифонной трубки 9 , удлинительной трубки 3 и насадки 2 для получения высокократной воздушно-механической пены.

Баллон для углекислоты 8 имеет на горловине резьбу, на которую навернут ниппель с дозирующим отверстием для выпуска углекислоты.

Пусковой механизм состоит из штока 7 с иглой на конце рычага 6 , с помощью которого происходит прокол мембраны баллона с СО 2 .

Воздушно-пенный насадок состоит из корпуса, центробежного распылителя, вмонтированного в осадок, и кассеты с одной латунной сеткой.

Для переноски огнетушителя в верхней части огнетушителя имеется рукоятка 5 с прорезью. Снизу на корпус надет башмак, обеспечивающий устойчивое вертикальное положение огнетушителя.

Принцип действия огнетушителя следующий: при нажатии на пусковой рычаг 6 разрывается пломба и шток 7 прокалывает мембрану баллона 8 . Углекислота, выходя из баллона через дозирующее отверстие в ниппеле, создает давление в корпусе огнетушителя. Под давлением углекислого газа заряд по сифонной трубке 9 поступает через удлинительную трубку 3 в насадок 2 , где, распыляясь, смешивается с окружающим воздухом и образует высокократную воздушно-механическую пену.

В рабочем положении огнетушитель следует держать вертикально, не наклоняя и не переворачивая его.

Применение в огнетушителях марки ОВП практически нейтрального заряда при тушении пожаров не оказывает вредного влияния на окружающие предметы, так как после тушения воздушно-механическая пена почти бесследно исчезает.

При использовании огнетушителей в условиях отрицательных температур в огнетушащий заряд вводят некоторое количество глицерина или этиленгликоля.

Техническая характеристика ОЗП-5 ОВП-10

Емкость корпуса, л 5 10

Количество огнетушащего заряда, л 4,5 9,0

Количество пенообразователя в заряде, л 0,25 0,5

Количество получаемой пены, л 270 540

Кратность пены 60 60

Дальность струи, м 4,5 4,5

Время действия, с 20±5 45±5

Баллон для углекислоты, л 0,05 0,1

Количество углекислоты в баллоне, кг 40 75

Габариты, мм:

диаметр корпуса 156 156

высота 410 650

Масса огнетушителя с зарядом, кг 7,5 14

Огнетушители ОВП-100 и ОВПУ-250 . На промышленных предприятиях, где постоянно имеется сжатый воздух, используемый для производственных целей, довольно широкое распространение получили стационарные воздушно-пенные установки (огнетушители) ОВП-100 (рис. 4) и ОВПУ-250 (рис. 5). В резервуаре 1 такой установки постоянно хранится водный раствор пенообразователя, который заливают в нее через горловину 3 . Установка подключена к трубопроводу 2 сжатого воздуха. В случае возникновения пожара к установке присоединяют рукав с гладким патрубком 4 на конце и открывают на трубопроводе сжатого воздуха. Для получения пены в таких установках применяют парогенераторы эвольвентного (ГЭ) и струйного типа (ГДС и ГИС).

При емкости огнетушителя в 250 л (ОВПУ-250) из него можно получить до 2 м 2 воздушно-механической пены. Этой пеной можно покрыть до 10-20 м 2 поверхности слоем 10-20 см.

Ранее выпускались огнетушители ОВП-5 (на 5 л) и ОВПУ-250, аналогичный УВП-250.

В качестве огнетушащего вещества в огнетушителях используется водный раствор специального пенообразователя (ПО-1; ПО-6к; ПО-ЗАИ и др.), который составляет 4-6% объема заряда.

Для подачи пены в огнетушителях устанавливаются пусковые газовые баллоны (углекислота, воздух, азот и др.) вместимостью, соответствующей его заряду.

Для приведения в действие ручного огнетушителя ОВП-10 (рис.3) необходимо:

Снять с помощью транспортной рукоятки 6 огнетушитель и поднести его к месту горения;

Сорвать пломбу и нажать на рычаг запорно-пускового устройства 8, при этом игла вскрывает баллончик с рабочим газом, под действием которого повышается давление в корпусе и раствор пенообразователя подается через сифонную трубку и шланг к стволу-распылителю 5, где, смешиваясь с подсасываемым воздухом, образуется воздушно-механическая пена средней кратности;

Направить пену на очаг горения.

При работе огнетушитель необходимо держать в вертикальном положении.

Баллоны с рычажным запорным устройством проверяются один раз в год, а с вентильным запором - один раз в квартал путем взвешивания. Если утечка газа из пускового баллона составляет более 5% массы заряда, то баллон должен быть заменен или отправлен на перезарядку.

Не рекомендуется устанавливать воздушно-пенные огнетушители вблизи источников с высокой температурой, так как для водного раствора пенообразователя оптимальной температурой является 20°С, при которой он дольше сохраняет свои огнетушащие свойства.

ОВП-10 ОВП-50 ОВП-100

2.3. УГЛЕКИСЛОТНЫЕ ОГНЕТУШИТЕЛИ

Огнетушащим средством углекислотных огнетушителей является негорючие газы (двуокись углерода) или галоидуглеводородные соединения (бромэтил, хладон). В зависимости от применяемого огнетушащего средства огнетушители называются углекислотными, хладоновыми, бромхладоновыми и т.п.

Вследствие частичного перехода жидкой углекислоты в газ в баллоне постоянно находится жидкая и газообразная углекислота. Их соотношение непостоянно и зависит от температуры окружающей среды и коэффициента заполнения баллона. При повышении температуры давление в баллоне повышается вследствие перехода углекислоты из жидкого состояния в газообразное. Во избежание разрыва баллона все углекислотные огнетушители снабжены предохранительными мембранами. При быстром испарении сжиженного углекислого газа образуется твердая (снегообразная) углекислота с температурой минус 79 °С, которая охлаждает горящий объект и снижает процентное содержание кислорода в зоне горения.

Вследствие плохой электропроводности твердая снегообразная углекислота используется для тушения электрооборудования под током.

Огнетушители СО ² (углекислотные) переносные ОУ-1, ОУ-2, ОУ-3, ОУ-4, ОУ-5.

Огнетушители СО ² (углекислотные) передвижные ОУ-10, ОУ-20, ОУ-40, ОУ-80 по ТУ 4854-212-21352393-99.

Огнетушители СО ² (углекислотные) переносные вместимостью баллонов 2,3,5,6,8 литров, а так же огнетушители СО ² (углекислотные) передвижные вместимостью баллонов 10, 20, 40, 80 литров предназначены для тушения загорании различных веществ, горение которых не может происходить без доступа воздуха, загорании на электрифицированном железнодорожном транспорте, электроустановок, находящихся под напряжением не более 10кВ, загорания в музеях, картинных галереях и архивах, широкое распространение в офисных помещениях при наличии оргтехники, а так же в жилом секторе. Заряд углекислотных огнетушителей находится под высоким давлением, поэтому корпуса (баллоны) снабжаются предохранительными мембранами, а заполнение диоксидом углерода допускается до 75%.

Запрещается эксплуатация углекислотных огнетушителей без предохранительных мембран, а также установка транспортных баллонов на передвижные тележки вместо штатных.

Углекислотные огнетушители (ОУ) (Табл. 5) получили наибольшее распространение из-за их универсального применения, компактности и эффективности тушения.

Углекислотные огнетушители (рис. 6-9) могут быть ручными (ОУ-2, ОУ-5 и ОУ-8), передвижными (ОУ-25 и ОУ-80), а также возимыми (ОУ-400).

Огнетушитель ОУ-8 и ОУ-80 предназначен для комплектации морских судов с неограниченным районом плавания. Преимуществом углекислотных огнетушителей является отсутствие следов тушения т.к. углекислота после использования не оставляет следов и грязи. Огнетушители не предназначены для тушения загорании веществ, горение которых может происходить без доступа воздуха (алюминий, магний и их сплавы, натрий, калий).

Возимые огнетушители ОУ-400 устанавливаются на автомобильном одноосном шасси. Они не нашли широкого применения из-за необходимости транспортирования их автотранспортом, сложности эксплуатации, ограниченного применения для тушения пожаров в производственных зданиях и поэтому не рассматриваются в лабораторной работе.

Огнетушители должны эксплуатироваться в условиях умеренного климата У, категории 2, тип атмосферы II, по ГОСТ 15150 в диапазоне температур от минус 40 до плюс 50°С.

Для приведения в действие ручных углекислотных огнетушителей ОУ-2, ОУ-5 и ОУ-8 (рис. 6 и 7) необходимо:

Используя транспортную рукоятку, снять и поднести огнетушитель к месту горения;

Направить раструб на очаг горения и открыть запорно-пусковое устройство (вентиль или рычаг).

Задорно-пусковое устройство позволяет прерывать подачу углекислоты.

При работе углекислотных огнетушителей всех типов запрещается держать раструб незащищенной рукой, так как при выходе углекислоты образуется снегообразная масса с температурой минус 80°С.

У передвижных огнетушителей ОУ-25 и ОУ-80 на раструбе имеется специальная изолированная ручка, которой следует пользоваться при тушении пожара.

При использовании огнетушителей ОУ необходимо иметь в виду, что углекислота в больших концентрациях к объему помещения может вызвать отравления персонала, поэтому после применения углекислотных огнетушителей небольшие помещения следует проветрить.

Пена – это скопление пузырьков, которое способствует , главным образом, за счет эффекта поверхностного тушения. Пузырьки возникают при смешивании воды с пенообразователем. Пена легче самого легкого воспламеняющегося нефтепродукта, поэтому при подаче на горящий нефтепродукт она остается на его поверхности.

Дополнительно читаете еще один


Виды пены по кратности:

  • пены низкой кратности – кратность пены от 4 до 20 (получают стволами СВП, пеносливными устройствами);
  • пены средней кратности – кратность пены от 21 до 200 (получают генераторами ГПС);
  • пены высокой кратности – кратность пены более 200 (получают путем принудительного нагнетания воздуха).

Область применения. Достоинства и недостатки

Пена широко применяется для тушения пожаров твердых (пожары класса А) жидких веществ (пожары класса В), не вступающих во взаимодействие с водой, и в первую очередь – для тушения пожаров нефтепродуктов.

Химическая пена о бразуется смешиванием щелочи (обычно бикарбоната натрия) с кислотой (как правило, сульфата алюминия) в воде. Эти вещества содержатся в одном герметичном контейнере. Чтобы сделать пену более прочной и продлить срок ее службы, к ней добавляется стабилизатор.

При взаимодействии указанных химических веществ образуются пузырьки, наполненные углекислым газом, который в данном случае практически не обладает никакой огнетушащей способностью; его назначение – заставить пузырьки всплывать.

Порошок может храниться в емкостях и вводиться в воду в процессе борьбы с пожаром через специальную воронку или каждое из двух химических веществ может быть предварительно перемешано с водой, в результате чего образуется раствор сульфата алюминия и раствор бикарбоната натрия.

Эта пена образуется из пенного раствора, получаемого при смешивании пенообразователя с водой. Пузырьки возникают при турбулентном перемешивании воздуха с пенным раствором. Как следует из самого названия пены, ее пузырьки заполнены воздухом. Качество пены зависит от степени перемешивания, а также от исполнения и эффективности используемого оборудования, а ее количество – от конструкции этого оборудования.

Существует несколько типов воздушно-механической пены, одинаковых по природе, но имеющих разную огнетушащую эффективность. Ее пенообразователи производят на основе протеина и поверхностно-активных веществ. Поверхностно-активные вещества – это большая группа веществ, включающая моющие средства, смачиватели и жидкое мыло.

Ограничения в применении пены

При правильном использовании пена – эффективное огнетушащее вещество. Тем не менее существуют определенные ограничения в ее применении, которые перечислены далее.

  1. Поскольку пена представляет собой водный раствор, она проводит электричество, поэтому ее нельзя подавать на электрооборудование, находящееся под напряжением.
  2. Пену, так же как и воду, нельзя применять для тушения горючих металлов.
  3. Многие типы пены нельзя употреблять с огнетушащими порошками. Исключение из этого правила составляет «легкая вода», которая может использоваться с огнетушащим порошком
  4. Пена не годится для тушения пожаров, связанных с горением газов и криогенных жидкостей. Но высоко-кратная пена применяется при тушении растекающихся криогенных жидкостей для быстрого подогрева паров и уменьшения опасности, сопутствующих такому растеканию

  1. Несмотря на существующие ограничения в применении, пена очень эффективна при борьбе .
  2. Пена - очень эффективное огнетушащее вещество, которое, кроме того, обладает и охлаждающим эффектом.
  3. Пена создает паровой барьер, препятствующий выходу воспла­меняющихся паров наружу. Поверхность цистерны может быть покрыта пеной для защиты ее от пожара в соседней цистерне.

4. Пена может быть использована для тушения пожаров класса А в связи с наличием в ней воды. Особенно эффективна «легкая вода».

5. Пена – эффективное огнетушащее вещество для покрытия расте­кающихся нефтепродуктов. Если нефтепродукт вытекает, нужно попытаться закрыть клапан и таким образом прервать поток. Если это невозможно сделать, надо преградить путь потоку при помощи пены, которую следует подавать в район пожара для его тушения и затем для создания защитного слоя, покрывающего просачивающуюся жидкость.

6. Пена – наиболее эффективное огнетушащее вещество для тушения пожаров в больших емкостях с .

7. Для получения пены может использоваться пресная или жесткая или мягкая вода.

Отдельного внимания заслуживает и компрессионная пена, которая очень хорошо себя зарекомендовала при тушении пожаров.

Компрессионная пена (compressed air foam system, CAFS) – технология, используемая в пожаротушении для доставки огнетушащей пены с целью тушения возгорания или защиты зоны, где отсутствует горение, от воспламенения.

Компрессионная пена получается из стандартной насосной установки, которая имеет точку ввода сжатого воздуха в пенообразователь для формирования пены. Кроме того, сжатый воздух также добавляет энергию в струю, которая позволяет увеличить дальность доставки ОТВ по сравнению со стандартными пеногенераторами или стволами.

При использовании компрессионной пены, эффективность огнетушащего вещества составляет порядка 80%. Такой показатель возможен благодаря особым физическим свойствам компрессионной пены, а именно адгезивности. При тушении пожара, ствольщик получает в свой арсенал новые возможности. При нанесении на потолок и стены, пена изолирует смежные помещения от воздействия высоких температур, при этом пена долго держится даже на вертикальных поверхностях: от одного часа на металлической до двух-трех часов на деревянной. Каждый пузырь компрессионной пены имеет стойкую связь с соседними, что обуславливает высокую стойкость пены. В результате получается тонкое (около 1-2 сантиметров) и прочное «одеяло», которое буквально «укрывает» горящую поверхность, прекращая доступ кислорода в очаг возгорания.

Готовая компрессионная пена подаётся по напорным пожарным рукавам диаметром 38 или 51 мм под рабочим давлением 7 ÷ 10 кгс/см 2 .

Физические параметры компрессионной пены и, соответственно, огнетушащие свойства пены – изменяются посредством изменения соотношения ингредиентов. Может вырабатываться «сырая» (тяжёлая) пена с соотношением от 1: 5 (вода: воздух) и «сухая» (лёгкая) пена с соотношением до 1: 20 (вода: воздух).

Подача компрессионной пены с соотношением 1: 10 (вода: воздух) на вертикальные поверхности

(металлическую дверь, кирпичную стену).

Вместе с тем, пена обладает и лучшими свойствами воды – она охлаждает очаг, а благодаря смачивателям, включенным в ее состав – проникает в поры и трещины поверхности, предотвращая тление материала и его повторное возгорание.

Главные преимущества компрессионной пены: быстрый сбив пламени и снижение температуры, сокращение времени тушения в 5 ÷ 7 раз (на 500 ÷ 700 % !!!), снижение расхода воды в 5 ÷ 15 раз (на 500 ÷ 1500 %).

Пенобразователи

Пенообразователь (пенный концентрат) -концентрированный водный раствор стабилизатора пены (поверхностно-активного вещества), образующий при смешивании с водой рабочий раствор пенообразователя.

Пенообразователи предназначены для получения с помощью пожарной техники воздушно-механической пены или растворов смачивателей, используемых для тушения пожаров классов А (горение твердых веществ) и В (горение жидких веществ).

Пенообразователи в зависимости от химического состава (поверхностно-активной основы) подразделяются на:

  • синтетические (с),
  • фторсинтетические (фс ),
  • протеиновые (п),
  • фторпротеиновые (фп ).

Пенообразователи в зависимости от способности образовывать огнетушащую пену на стандартном пожарном оборудовании подразделяются на:

Самыми популярными и недорогими, и в то же время эффективными, на сегодняшний день считаются пенообразователи с маркировкой ПО-6 и ПО-3. Цифры на маркировке говорят об уровне концентрации пенообразователя в рабочем растворе (6 или 3 литра на определенный объем воды). Хранить такую продукцию следует в отапливаемых помещениях. Замерзая, пенообразователь не теряет своих свойств и вновь готов к эксплуатации после размораживания, но в условиях возникшего пожара времени на приведение его в нужную консистенцию может просто не быть. Оба вида относятся к числу биоразлагаемых и абсолютно безопасны при хранении и транспортировке.

ХАРАКТЕРИСТИКА НАИБОЛЕЕ РАСПРОСТРАНЁННЫХ ПЕНООБРАЗОВАТЕЛЕЙ

ПО-6НП – синтетический, биологически разлагаем. Предназначен для тушения пожаров нефтепродуктов, ГЖ, для применения с морской водой. «Морпен» – синтетический, биологически разлагаем. Предназначен для получения огнетушащей пены низкой, средней и высокой кратности с использованием как пресной, так и морской воды.

ПО-1 Водный раствор нейтрализованного керосинового кон­такта 84±3%, костный клей для стойкости пены 5 ± 1 % синтетический этиловый спирт или концентрированный этиленгликоль 11 ± 1 %. Температура замерзания не пре­вышает -8 °С. Является основным пенообразующим средством для получения воздушно-механической пены любой кратности.

При тушении нефтей и нефтепродуктов концентрация водного раствора ПО-1 принимается 6%. При тушении других веществ и материалов используют растворы с концентрацией 2 – 6 %.

ПО-3А Водный раствор смеси натриевых солей вторичных ал­килсульфатов. Содержит 26±1 % активного вещества. Температура замерзания не выше – 3°С. При примене­нии разбавляют водой в пропорции 1: 1 с использо­ванием дозирующей аппаратуры, рассчитанной на пено­образователь ПО-1. Для получения пены применяют водный раствор с концентрацией 4 – 6 %.
ПО-6К Изготовляют из кислого гудрона при сульфировании гидроочищенного керосина. Содержит 32 % активного вещества. Температура замерзания не выше -3°С. Для получения пены при тушении нефтепродуктов используют водный раствор с концентрацией 6 %. В других случаях концентрация водного раствора может быть меньше.
«Сампо» Состоит из синтетического поверхностно-активного вещества (20%), стабилизатора (15%), антифризной добавки (10%) и вещества, снижающего коррозионное действие состава (0,1 %). Температура застывания – 10°С. Для получения пены используют водный раствор с концентрацией 6 %. Применяют при тушении нефти, неполярных нефтепродуктов, резинотехнических изделий древесины, волокнистых материалов, в стационарны системах пожаротушения и для защиты технологических установок.

Воздушно-механическая пена предназначена для тушения пожаров жидких (класс пожара В) и твердых (класс пожара А) горючих веществ. Пена представляет собой ячеисто-пленочную дисперсную систему, состоящую из массы пузырьков газа или воздуха, разделенных тонкими пленками жидкости.

Получают воздушно-механическую пену механическим перемешиванием пенообразующего раствора с воздухом. Основным огнетушащим свойством пены является ее способность препятствовать поступлению
в зону горения горючих паров и газов, в результате чего горение прекращается. Существенную роль играет также охлаждающее действие огнетушащих пен, которое в значительной степени присуще пенам низкой кратности, содержащим большое количество жидкости.

Важной характеристикой огнетушащей пены является ее кратность – отношение объема пены к объему раствора пенообразователя, содержащегося в пене. Различают пены низкой (до 10), средней (от 10 до 200) и высокой (свыше 200) кратности. Пенные стволы классифицируются в зависимости от кратности получаемой пены (рис. 2.36).


Рис. 2.36. Классификация пенных пожарных стволов

Пенный ствол – устройство для формирования из водного раствора пенообразователя струй воздушно-механической пены различной кратности, устанавливаемое на конце напорной линии.

Для получения пены низкой кратности применяются ручные воздушно-пенные стволы (СВП) и стволы воздушно-пенные с эжектируемым устройством (СВПЭ). Они имеют одинаковое устройство и отличаются только размерами, а также эжектирующим устройством, предназначенным для подсасывания пенообразователя из емкости.

Ствол СВПЭ (рис. 2.37) состоит из корпуса 8 , с одной стороны которого навернута цапковая соединительная головка 7 для присоединения ствола
к рукавной напорной линии соответствующего диаметра, а с другой – на винтах присоединена направляющая труба 5 , изготовленная из алюминиевого сплава и предназначенная для формирования воздушно-механической пены и направления ее на очаг пожара. В корпусе ствола имеются три камеры: приемная 6 , вакуумная 3 и выходная 4 . На вакуумной камере расположен ниппель 2 диаметром 16 мм для присоединения шланга 1 , имеющего длину 1,5 м, через который всасывается пенообразователь. При рабочем давлении воды 0,6 МПа создается разрежение в камере корпуса ствола
не менее 600 мм рт. ст. (0,08 МПа).

Рис. 2.37. Ствол воздушно-пенный с эжектирующим устройством типа СВПЭ:

1 – шланг; 2 – ниппель; 3 – вакуумная камера; 4 – выходная камера;
5 – направляющая труба; 6 – приемная камера;

7 – соединительная головка; 8 – корпус

Принцип образования пены в стволе СВП (рис. 2.38) заключается
в следующем. Пенообразующий раствор, проходя через отверстие 2 в корпусе ствола 1 , создает в конусной камере 3 разрежение, благодаря которому воздух подсасывается через восемь отверстий, равномерно расположенных в направляющей трубе 4 ствола. Поступающий в трубу воздух интенсивно перемешивается с пенообразующим раствором и образует на выходе из ствола струю воздушно-механической пены.


Рис. 2.38. Ствол воздушно-пенный (СВП):

1 – корпус ствола; 2 – отверстие; 3 – конусная камера; 4 – направляющая труба

Принцип образования пены в стволе СВПЭ отличается от СВП тем, что в приемную камеру поступает не пенообразующий раствор, а вода, которая, проходя по центральному отверстию, создает разрежение в вакуумной камере. Через ниппель в вакуумную камеру по шлангу из ранцевого бачка или другой емкости подсасывается пенообразователь. Технические характеристики пожарных стволов для получения пены низкой кратности представлены в табл. 2.24.

Таблица 2.24

Показатели Размерность Тип ствола
СВП СВПЭ-2 СВПЭ-4 СВПЭ-8
Производительность по пене м 3 /мин
Рабочее давление перед стволом МПа 0,4–0,6 0,6 0,6 0,6
Расход воды л/с 4,0 7,9 16,0
Расход 4–6 % раствора пенообразователя л/с 5–6
Кратность пены на выходе из ствола 7,0 (не менее) 8,0 (не менее)
Дальность подачи пены м
Соединительная головка ГЦ-70 ГЦ-50 ГЦ-70 ГЦ-80

Для получения из водного раствора пенообразователя воздушно-механической пены средней кратности и подачи ее в очаг пожара используются генераторы пены средней кратности (ГПС).

В зависимости от производительности по пене выпускаются следующие типоразмеры генераторов: ГПС-200; ГПС-600; ГПС-2000. Их технические характеристики представлены в табл. 2.25.

Таблица 2.25

Генераторы пены ГПС-200 и ГПС-600 по конструкции идентичны
и отличаются только геометрическими размерами распылителя и корпуса. Генератор представляет собой водоструйный эжекторный аппарат переносного типа и состоит из следующих основных частей (рис. 2.39): насадка 1 , пакета сеток 2 ,корпуса генератора 3 с направляющим устройством, коллектора 4 и распылителя центробежного 5 . К коллектору генератора при помощи трех стоек крепится корпус распылителя, в который вмонтированы распылитель 3 и муфтовая головка ГМ-70. Пакет сеток 2 представляет собой кольцо, обтянутое по торцевым плоскостям металлической сеткой (размер ячейки 0,8 мм). Распылитель центробежный 3 имеет шесть окон, расположенных под углом 12°, что вызывает закручивание потока рабочей жидкости и обеспечивает получение на выходе распыленной струи. Насадок 4 предназначен для формирования пенного потока после пакета сеток в компактную струю и увеличения дальности полета пены. Воздушно-механическая пена получается в результате смешения в генераторе в определенной пропорции трех компонентов: воды, пенообразователя и воздуха. Поток раствора пенообразователя под давлением подается в распылитель. В результате эжекции при входе распыленной струи в коллектор происходит подсос воздуха и перемешивание его с раствором. Смесь капель пенообразующего раствора и воздуха попадает на пакет сеток.

5
4
3
2
1

Рис. 2.39. Генератор пены средней кратности ГПС-600:

1 – насадок; 2 – пакет сеток; 3 – корпус генератора;

4 – коллектор; 5 – распылитель центробежный

На сетках деформированные капли образуют систему растянутых пленок, которые, замыкаясь в ограниченных объемах, составляют сначала элементарную (отдельные пузырьки), а затем массовую пену. Энергией вновь поступающих капель и воздуха масса пены выталкивается из пеногенератора.


Контрольные вопросы

1. Назначение и классификация пожарных рукавов.

2. Особенности конструкции всасывающих и напорно-всасывающих рукавов. Их функции. Область применения.

3. Классификация пожарных рукавов. Особенности их конструкций.

4. Проанализировать потери напора в напорных рукавах. Определение потери напора в рукавных линиях.

5. Классификация гидравлического оборудования. Его назначение. Устройство.

6. Классификация пожарных стволов. Назначение. Особенности подачи огнетушащих веществ.

7. Изложите особенности конструкции стволов РС-70 и КБ-Р.

8. Назначение стволов лафетных комбинированных. Классификация. Дальность подачи водяных и пенных струй.

9. Изложите различие принципов образования пены при подаче воздушно-пенными стволами СВПЭ и СВП.

10. Устройство генераторов пены средней кратности. Основные показатели их технических характеристик.

Воздушно-механическая пена предназначена для тушения пожаров жидких (класс пожара В) и твердых (класс пожара А) горючих веществ. Пена представляет собой ячеисто-пленочную дисперсную систему, состоящую из массы пузырьков газа или воздуха, разделенных тонкими пленками жидкости.

Получают воздушно-механическую пену механическим перемешиванием пенообразующего раствора с воздухом. Основным огнетушащим свойством пены является ее способность препятствовать поступлению в зону горения горючих паров и газов, в результате чего горение прекращается. Существенную роль играет также охлаждающее действие огнетушащих пен, которое в значительной степени присуще пенам низкой кратности, содержащим большое количество жидкости.

Важной характеристикой огнетушащей пены является ее
кратность – отношение объема пены к объему раствора пенообразователя, содержащегося в пене. Различают пены низкой (до 10),
средней (от 10 до 200) и высокой (свыше 200) кратности. Пенные стволы классифицируются в зависимости от кратности получаемой пены
(рис. 3.23).


Рис. 3.23. Классификация пенных пожарных стволов

Пенный ствол – устройство, устанавливаемое на конце напорной линии для формирования из водного раствора пенообразователя струй воздушно-механической пены различной кратности.

Для получения пены низкой кратности применяются ручные воздушно-пенные стволы СВП и СВПЭ. Они имеют одинаковое устройство, отличаются только размерами, а также эжектирующим устройством, предназначенным для подсасывания пенообразователя из емкости.

Ствол СВПЭ (рис. 3.24) состоит из корпуса 8 , с одной стороны которого навернута цапковая соединительная головка 7 для присоединения ствола к рукавной напорной линии соответствующего диаметра, а с
другой – на винтах присоединена труба 5 , изготовленная из алюминиевого сплава и предназначенная для формирования воздушно-механической пены и направления ее на очаг пожара. В корпусе ствола имеются три камеры: приемная 6 , вакуумная 3 и выходная 4 . На вакуумной камере расположен ниппель 2 диаметром 16 мм для присоединения шланга 1 , имеющего длину 1,5 м, через который всасывается пенообразователь. При рабочем давлении воды 0,6 МПа создается разрежение в камере корпуса ствола не менее 600 мм рт. ст. (0,08 МПа).

8
7
5
4
3
2
6
1

Рис. 3.24. Ствол воздушно-пенный с эжектирующим устройством типа СВПЭ:

1 – шланг; 2 – ниппель; 3 – вакуумная камера; 4 – выходная камера;
5 – направляющая труба; 6 – приемная камера; 7 – соединительная головка;
8 – корпус

Принцип образования пены в стволе СВП (рис. 3.25) заключается в следующем. Пенообразующий раствор, проходя через отверстие 2 в корпусе ствола 1 , создает в конусной камере 3 разрежение, благодаря которому воздух подсасывается через восемь отверстий, равномерно расположенных в направляющей трубе 4 ствола. Поступающий в трубу воздух интенсивно перемешивается с пенообразующим раствором и образует на выходе из ствола струю воздушно-механической пены.

3
2
1
4

Рис. 3.25. Ствол воздушно-пенный СВП:

1 – корпус ствола; 2 – отверстие; 3 – конусная камера; 4 – направляющая труба

Принцип образования пены в стволе СВПЭ отличается от СВП тем, что в приемную камеру поступает не пенообразующий раствор, а вода, которая, проходя по центральному отверстию, создает разрежение в вакуумной камере. Через ниппель в вакуумную камеру по шлангу из ранцевого бочка или другой емкости подсасывается пенообразователь. Технические характеристики пожарных стволов для получения пены низкой кратности представлены в табл. 3.10.

Таблица 3.10

Показатель Размерность Тип ствола
СВП СВПЭ-2 СВПЭ-4 СВПЭ-8
Производительность по пене м 3 /мин
Рабочее давление перед стволом МПа 0,4 – 0,6 0,6 0,6 0,6
Расход воды л/с - 4,0 7,9 16,0
Расход 4 – 6 % раствора пенообразователя л/с 5 – 6 - - -
Кратность пены на выходе из ствола - 7,0 (не менее) 8,0 (не менее)
Дальность подачи пены м
Соединительная головка - ГЦ-70 ГЦ-50 ГЦ-70 ГЦ-80

Для получения из водного раствора пенообразователя воздушно-механической пены средней кратности и подачи ее в очаг пожара используются генераторы пены средней кратности.

В зависимости от производительности по пене выпускаются следующие типоразмеры генераторов: ГПС-200; ГПС-600; ГПС-2000. Их технические характеристики представлены в табл. 3.11.

Таблица 3.11

Генераторы пены ГПС-200 и ГПС-600 по конструкции идентичны и отличаются только геометрическими размерами распылителя и корпуса. Генератор представляет собой водоструйный эжекторный аппарат переносного типа и состоит из следующих основных частей (рис. 3.26): корпуса генератора 1 с направляющим устройством, пакета сеток 2 , распылителя центробежного 3 , насадка 4 и коллектора 5 . К коллектору генератора при помощи трех стоек крепится корпус распылителя, в котором вмонтирован распылитель 3 и муфтовая головка ГМ-70. Пакет сеток 2 представляет собой кольцо, обтянутое по торцевым плоскостям металлической сеткой (размер ячейки 0,8 мм). Распылитель вихревого типа 3 имеет шесть окон, расположенных под углом 12 ° , что вызывает закручивание потока рабочей жидкости и обеспечивает получение на выходе распыленной струи. Насадок 4 предназначен для формирования пенного потока после пакета сеток в компактную струю и увеличения дальности полета пены. Воздушно-механическая пена получается в результате смешения в генераторе в определенной пропорции трех компонентов: воды, пенообразователя и воздуха. Поток раствора пенообразователя под давлением подается в распылитель. В результате эжекции при входе распыленной струи в коллектор происходит подсос воздуха и перемешивание его с раствором. Смесь капель пенообразующего раствора и воздуха попадает на пакет сеток. На сетках
деформированные капли образуют систему растянутых пленок, которые, замыкаясь в ограниченных объемах, составляют сначала элементарную (отдельные пузырьки), а затем массовую пену. Энергией вновь поступающих капель и воздуха масса пены выталкивается из пеногенератора.

В качестве пенных пожарных стволов комбинированного типа рассмотрим установки комбинированного тушения пожаров (УКТП) «Пурга», которые могут быть ручного, стационарного и мобильного исполнения. Они предназначены для получения воздушно-механической пены низкой и средней кратности. Технические характеристики УКТП различного исполнения представлены в табл. 3.12. Кроме того, для этих стволов разработаны диаграмма радиуса действия и карта орошения (рис. 3.27), что позволяет более четко оценивать их тактические возможности при тушении пожаров.

Похожие публикации