Теоретические основы выведения новых сортов винограда - скрещивание виноградных растений. Как скрещивать растения в домашних условиях? Как скрещивают растения разных видов

Селекция - наука, разрабатывающая пути создания новых и улучшения существующих сортов растений, пород животных и штаммов микроорганизмов.

Создание новых сортов и пород основывается на таких важнейших свойствах живого организма, как наследственность и изменчивость. Именно поэтому генетика - наука об изменчивости и наследственности организмов - является теоретической основой селекции.

Имея свои собственные задачи и методы, селекция твердо опирается на законы генетики, является важной областью практического использования закономерностей, установленных генетикой. Вместе с тем селекция опирается и на достижения других наук. На сегодняшний день генетика вышла на уровень целенаправленного конструирования организмов с нужными признаками и свойствами.

Сорт, порода и штамм - устойчивая группа организмов, искусственно созданная человеком и имеющая определенные наследственные особенности.

Все особи внутри породы, сорта и штамма имеют сходные, наследственно закрепленные морфологические, физиолого-биохимические и хозяйственные признаки и свойства, а также однотипную реакцию на факторы внешней среды.

Основные направления селекции:

  • высокая урожайность сортов растений, плодовитость и продуктивность пород животных;
  • улучшение качества продукции (например, вкус, внешний вид плодов и овощей, химический состав зерна - содержание белка, клейковины, незаменимых аминокислот и т. д.);
  • физиологические свойства (скороспелость, засухоустойчивость, зимостойкость, устойчивость к болезням, вредителям и неблагоприятным климатическим условиям).
  • выведение стрессоустойчивых пород (для разведения в условиях большой скученности - на птицефабриках, фермах и т. п.);
  • пушное звероводство;
  • рыбоводство - разведение рыбы в искусственных водоемах.

ОТЛИЧИЕ КУЛЬТУРНЫХ ФОРМ ОТ ДИКИХ

Культурные формы Дикие формы
развиты признаки, полезные для человека и часто вредные в естественных условиях наличие признаков, неудобных для человека (агрессивность, колючесть и т. п.)
высокая продуктивность низкая продуктивность (мелкие плоды; низкая масса, яйценоскость, удойность)
хуже адаптируются к меняющимся условиям среды высокая адаптивность
не имеют средств защиты от хищников и вредителей (горьких или ядовитых веществ, шипов, колючек и т. п.) наличие естественных защитных приспособлений, повышающих жизнестойкость, но неудобных для человека

основные методы селекции

Основные методы селекции:

  • подбор родительских пар
  • отбор
  • гибридизация
  • искусственный мутагенез

Подбор родительских пар

Данный метод применяется прежде всего в селекции животных, т. к. для животных характерно половое размножение и немногочисленное потомство.

Выведение новой породы - процесс длительный, требующий больших материальных затрат. Это может быть целенаправленное получение определенного экстерьера (совокупности фенотипических признаков), повышение молочности, жирности молока, качества мяса и т. д.

Разводимые животные оцениваются не только по внешним признакам, но и по происхождению и качеству потомства . Поэтому необходимо хорошо знать их родословную. В племенных хозяйствах при подборе производителей всегда ведется учёт родословных, в которых оцениваются экстерьерные особенности и продуктивность родительских форм в течение ряда поколений.

работы И. В. Мичурина

Особое место в практике улучшения плодово-ягодных культур занимает селекционная работа И. В. Мичурина. Большое значение он придавал подбору родительских пар для скрещивания. При этом он не использовал местные дикорастущие сорта (так как они обладали стойкой наследственностью, и гибрид обычно уклонялся в сторону дикого родителя), а брал растения из других, отдалённых географических мест и скрещивал их друг с другом.

Важным звеном в работе Мичурина было целенаправленное воспитание гибридных сеянцев: в определённый период их развития создавались условия для доминирования признаков одного из родителей и подавления признаков другого, т. е. эффективное управление доминированием признаков (разные приёмы обработки почвы, внесение удобрений, прививки в крону другого растения и т. п.).

Метод ментора - воспитание на подвое. В качестве привоя Мичурин брал как молодое растение, так и почки от зрелого плодоносящего дерева. Этим методом удалось придать желаемую окраску плодам гибрида вишни с черешней под названием «Краса севера».

Мичурин применял также отдалённую гибридизацию. Им получен своеобразный гибрид вишни и черемухи - церападус, а также гибрид терна и сливы, яблони и груши, персика и абрикоса. Все мичуринские сорта поддерживают путём вегетативного размножения.

Отбор

Искусственный отбор - сохранение для дальнейшего размножения особей с интересующими селекционера признаками. Формы отбора: массовый и индивидуальный.

  • Интуитивный (бессознательный) отбор - самая древняя форма отбора, используемая ещё древним человеком: отбор особей по фенотипу, т.е. с наиболее полезными сочетаниями признаков.
  • Методический отбор - отбор для размножения особей с чётко определёнными признаками, согласно цели и с учетом их фенотипов и генотипов.
  • Массовый отбор - устранение из размножения особей, не имеющих ценные признаки, либо имеющих нежелательные признаки (например, агрессивных).

Массовый отбор может быть эффективен в том случае, если отбираются качественные, просто наследуемые и легко определяемые признаки. Массовый отбор обычно проводят среди перекрестноопыляемых растений. При этом селекционеры отбирают растения по фенотипу с интересующими их признаками. Недостаток массового отбора заключается в том, что селекционер не всегда может определить лучший генотип по фенотипу.

  • Индивидуальный отбор - выделение отдельных особей с интересующими человека признаками и получение от них потомства.

Индивидуальный отбор более эффективен при отборе особей по количественным, сложно наследуемым признакам. Этот вид отбора позволяет точно оценить генотип благодаря анализу наследования признаков у потомства. Индивидуальный отбор применяют по отношению к самоопыляемым растениям (сорта пшеницы, ячменя, гороха и др.).

Гибридизация

В селекционной работе с животными применяют в основном два способа скрещивания: инбридинг и аутбридинг .

Инбридинг - скрещивание близкородственных форм: в качестве исходных форм используются братья и сестры или родители и потомство.

Результат: получение гомозиготных организмов → разложение исходной формы на ряд чистых линий.

Минусы: пониженная жизнеспособность (рецессивные гомозиготы зачастую несут наследственные заболевания).

Такое скрещивание в определённой степени аналогично самоопылению у растений, которое также приводит к повышению гомозиготности и, как следствие, к закреплению хозяйственно ценных признаков у потомков. При этом гомозиготизация по генам, контролирующим изучаемый признак, происходит тем быстрее, чем более близкородственное скрещивание используют при инбридинге. Однако гомозиготизация при инбридинге, как и в случае растений, ведет к ослаблению животных, снижает их устойчивость к воздействию среды, повышает заболеваемость.

В селекции инбридинг обычно является лишь одним из этапов улучшения породы. За ним следует скрещивание разных межлинейных гибридов, в результате которого нежелательные рецессивные аллели переводятся в гетерозиготное состояние и вредные последствия близкородственного скрещивания заметно снижаются.

Аутбридинг - неродственное скрещивание между особями одной породы или разных пород животных в пределах одного вида.

Результат: получение большого количества гетерозиготных организмов → поддержание полезных качеств и усиление их выраженности в ряду следующих поколений.

Отдалённая гибридизация - получение межвидовых и межродовых гибридов.

Отдалённая гибридизация в селекции животных применяется значительно реже, чем в селекции растений.

Межвидовые и межродовые гибриды животных и растений чаще всего бесплодны, так как нарушается мейоз и гаметогенез не происходит. При этом восстановление плодовитости у животных представляет более сложную задачу, поскольку получение полиплоидов на основе умножения числа хромосом у них невозможно.

Преодоление бесплодия межвидовых гибридов растений впервые удалось осуществить в начале 20-х годов ХХ века советскому генетику Г. Д. Карпеченко при скрещивании редьки и капусты. Это вновь созданное человеком растение не было похоже ни на редьку, ни на капусту. Стручки занимали как бы промежуточное положение и состояли из двух половинок, из которых одна напоминала стручок капусты, другая - редьки. Каждая из исходных форм имела в половых клетках по 9 хромосом. В этом случае клетки полученного от них гибрида имели 18 хромосом. Но некоторые яйцеклетки и пыльцевые зёрна содержали все 18 хромосом (диплоиды), а при их скрещивании создано растение с 36 хромосомами, которое оказалось плодовитым. Так была доказана возможность использования полиплоида для преодоления нескрещиваемости и бесплодия при отдалённой гибридизации.

Бывает, что бесплодны особи только одного пола. Например, у гибридов высокогорного быка яка и рогатого скота бесплодны (стерильны) самцы, а самки плодовиты (фертильны).

Но иногда гаметогенез у отдалённых гибридов протекает нормально, что позволило получить новые ценные породы животных. Примером являются архаромериносы, которые, как и архары (горные бараны), могут пастись высоко в горах, а как мериносы дают хорошую шерсть. Получены плодовитые гибриды от скрещивания местного (индийского) крупного рогатого скота с зебу. При скрещивании белуги и стерляди получен плодовитый гибрид - бестер, хорька и норки - хонорик, продуктивен гибрид между карпом и карасём.

В природе встречаются гибриды зебры и лошади (зеброид), бизона и зубра (зубробизон), тетерева и куропатки (межняк), зайца-русака и зайца-беляка (тумак), соболя и лисицы (кидус), а также тигра и льва (лигр).

В качестве примеров межродовых гибридов растений можно назвать гибрид пшеницы и ржи (тритикале), пшенично-пырейный гибрид, гибрид смородины и крыжовника (йошта), гибрид брюквы и кормовой капусты (куузика), гибриды озимой ржи и житняка, травянистого и древовидного томатов и др.

Гетерозис - явление повышенной жизнеспособности, урожайности, плодовитости гибридов первого поколения, превышающих по этим параметрам обоих родителей.

Уже со второго поколения гетерозисный эффект угасает. По-видимому, это происходит вследствие снижения числа гетерозиготных организмов и повышения доли гомозигот.

Классическими примерами проявления гетерозиса являются мул (гибрид кобылы и осла) и лошак (гибрид коня и ослицы) (рис. 1,2) . Это сильные, выносливые животные, которые могут использоваться в значительно более трудных условиях, чем родительские формы.

Рис. 1. Мул Рис. 2. Лошак

Продолжительность их жизни значительно выше, чем у родительских видов.

Лошак меньше мула ростом и строптив, поэтому менее удобен для использования в хозяйственной деятельности человека.

Гетерозис широко применяют в промышленном птицеводстве, например - бройлерные цыплята, отличающиеся очень быстрым ростом. Цыплёнок-бройлер - финальный гибрид, полученный в результате скрещивания нескольких линий разных пород кур (мясных родительских форм), проверенных на сочетаемость. Первоначально для такого скрещивания использовали породы корниш (в качестве отцовской формы) и белый плимутрок (в качестве материнской формы).

искусственный мутагенез

Искусственный мутагенез чаще всего используется как метод селекции растений. Он основан на применении физических и химических мутагенов для получения форм растений с выраженными мутациями. Такие формы в дальнейшем используются для гибридизации или отбора.

В селекции растений широко используется полиплоидия.

Полиплоидия - увеличение числа наборов хромосом в клетках организма, кратное гаплоидному (одинарному) числу хромосом; тип геномной мутации.

Половые клетки большинства организмов гаплоидны (содержат один набор хромосом - n), соматические - диплоидны (2n). Организмы, клетки которых содержат более двух наборов хромосом, называются полиплоидами, три набора - триплоидами (3n), четыре - тетраплоидами (4n) и т. д. Наиболее часто встречаются организмы с числом хромосомных наборов, кратным двум, - тетраплоиды, гексаплоиды (6n) и т. д.

Полиплоиды с нечётным числом наборов хромосом (триплоиды, пентаплоиды и т. д.) обычно не дают потомства (стерильны), т. к. образуемые ими половые клетки содержат неполный набор хромосом - не кратный гаплоидному.

появление полиплоидии

Полиплоидия может возникнуть при нерасхождении хромосом в мейозе. В этом случае половая клетка получает полный (нередуцированный) набор хромосом соматической клетки (2n). При слиянии такой гаметы с нормальной (n) образуется триплоидная зигота (3n), из которой развивается триплоид. Если обе гаметы несут по диплоидному набору, возникает тетраплоид. Полиплоидные клетки могут возникнуть в организме при незавершённом митозе: после удвоения хромосом деления клетки может не происходить, и в ней оказываются два набора хромосом. У растений тетраплоидные клетки могут дать начало тетраплоидным побегам, цветки которых будут вырабатывать диплоидные гаметы вместо гаплоидных. При самоопылении может возникнуть тетраплоид, при опылении нормальной гаметой - триплоид. При вегетативном размножении растений сохраняется плоидность исходного органа или ткани.

Благодаря полиплоидии выведены высокоурожайные полиплоидные сорта сахарной свеклы, хлопчатника, гречихи и др. Полиплоидные растения часто более жизнеспособны и плодовиты, чем нормальные диплоиды. О их большей устойчивости к холоду свидетельствует увеличение числа видов-полиплоидов в высоких широтах и в высокогорьях.

Поскольку полиплоидные формы часто обладают ценными хозяйственными признаками, искусственную полиплоидизацию применяют в растениеводстве для получения исходного селекционного материала.

Получение полиплоидов в эксперименте тесно связано с искусственным мутагенезом. С этой целью используют специальные мутагены (например, алкалоид колхицин), нарушающие расхождение хромосом в митозе и мейозе.

Получены урожайные полиплоиды ржи, гречихи, сахарной свёклы и других культурных растений; стерильные триплоиды арбуза, винограда, банана популярны благодаря бессемянным плодам.

Применение отдалённой гибридизации в сочетании с искусственной полиплоидизацией позволило отечественным учёным получить плодовитые полиплоидные гибриды растений (Г. Д. Карпеченко, гибрид-тетраплоид редьки и капусты) и животных (Б. Л. Астауров, гибрид-тетраплоид тутового шелкопряда).

Шелкопряды Астаурова

Очень редки случаи естественной полиплоидии у животных. Однако, академик Б. Л. Астауров разработал метод искусственного получения полиплоидов от межвидового гибрида шелкопрядов Bombyx mori и В. mandarina. У обоих этих видов n = 28 хромосомам.

При синтезировании тетраплоида использовался метод искусственного партеногенеза. Вначале были получены партеногенетические полиплоиды В. mori - 4 n, 6 n. Все полученные особи оказались фертильными (плодовитыми) самками.

Затем произвели скрещивание партеногенетических самок В. mori (4n) с самцами другого вида В. mandarina (2n). В потомстве от такого скрещивания появлялись триплоидные самки 2n В. mori + 1 n В. mandarina.

Эти самки, стерильные в обычных условиях, размножались путем партеногенеза. При этом партеногенетически иногда возникали 6n самки (4n В. mori + 2n В. mandarina).

В потомстве от скрещивания этих самок с 2n самцами В. mandarina были отобраны 4n формы обоего пола с удвоенным набором хромосом каждого вида (2n В. mori +2n В. mandarina).

Если гибрид 1n В. mori + 1n В. mandarina был бесплодным, то тетраплоид (4n) оказался плодовитым и при разведении дал плодовитое потомство. С помощью полиплоидии, таким образом, удалось синтезировать новую форму шелкопряда.

биотехнология

Биотехнология - наука, изучающая возможность модификации биологических организмов для обеспечения потребностей человека.

Применение биотехнологии (рис. 3):

  • производство лекарств, удобрений, средств биологической защиты растений;
  • биологическая очистка сточных вод;
  • восстановление ценных металлов из морской воды;
  • коррекция и исправление генетических патологий.

Рис. 3. Возможности биотехнологии

Например, включение в геном кишечной палочки гена, ответственного за образование у человека инсулина, позволило наладить промышленное получение этого гормона (рис. 4).

Рис. 4. Биотехнология получения инсулина

В биотехнологии успешно применяются методы генной и клеточной инженерии.

ГЕННАЯ И КЛЕТОЧНАЯ ИНЖЕНЕРИЯ

Генная инженерия - искусственное, целенаправленное изменение генотипа микроорганизмов с целью получения культур с заранее заданными свойствами.

Исследования в области генной инженерии распространяются не только на микроорганизмы, но и на человека. Они особенно актуальны при лечении болезней, связанных с нарушениями в иммунной системе, в системе свертывания крови, в онкологии.

Основной метод генной инженерии: выделение необходимых генов, их клонирование и введение в новую генетическую среду. Например, введение определённых генов с помощью плазмиды в организм бактерии для синтеза ею определённого белка (рис. 5).

Рис. 5. Применение генной инженерии

Основные этапы решения генно-инженерной задачи следующие:

  1. Получение изолированного гена.
  2. Введение гена в вектор (плазмиду) для переноса в организм.
  3. Перенос вектора с геном (рекомбинантной плазмиды) в модифицируемый организм.
  4. Преобразование клеток организма.
  5. Отбор генетически модифицированных организмов и устранение тех, которые не были успешно модифицированы.

Клеточная инженерия - это направление в науке и селекционной практике, которое изучает методы гибридизации соматических клеток, принадлежащих разным видам, возможности клонирования тканей или целых организмов из отдельных клеток.

Включает культивирование и клонирование клеток на специально подобранных средах, гибридизацию клеток, пересадку клеточных ядер и другие микрохирургические операции по «разборке» и «сборке» (реконструкции) жизнеспособных клеток из отдельных фрагментов.

На данный момент удалось получить гибриды между клетками животных, далёких по систематическому положению, например мыши и курицы. Соматические гибриды нашли широкое применение как в научных исследованиях, так и в биотехнологии.

Гибридные клетки, полученные от клеток человека и мыши и человека и китайского хомячка, участвовали в расшифровке генома человека.

Гибриды между опухолевыми клетками и лимфоцитами обладают свойствами обеих родительских клеточных линий: они неограниченно делятся и могут вырабатывать определённые антитела. Такие антитела применяют в лечебных и диагностических целях в медицине.

В эмбриологии для изучения процессов дифференцировки клеток и тканей в ходе онтогенеза используют организмы- химеры , состоящие из клеток с разными генотипами . Их создают путём соединения клеток разных зародышей на ранних этапах их развития.

Клонирование животных - ещё один метод клеточной инженерии: ядро соматической клетки пересаживают в лишённую ядра яйцеклетку с последующим выращиванием зародыша во взрослый организм.

Преимущество клеточной инженерии в том, что она позволяет экспериментировать с клетками, а не с целыми организмами.

Методы клеточной инженерии часто применяют в сочетании с генной инженерией.

работы Н. И. Вавилова

Николай Иванович Вавилов - российский генетик, растениевод, географ.

  1. Н. И. Вавилов организовал 180 экспедиций (20−30 гг. ХХ века) по самым труднодоступным и зачастую опасным районам земного шара с целью изучения многообразия и географического распространения культурных растений.
  2. Им была собрана уникальная, самая крупная в мире коллекция культурных растений (к 1940 г. коллекция включала 300 000 образцов), которые ежегодно размножаются в коллекциях Всероссийского института растениеводства имени Н. И. Вавилова (ВИР) и широко используются селекционерами как исходный материал для создания новых сортов зерновых, плодовых, овощных, технических, лекарственных и других культур.
  3. Создал учение об иммунитете растений.

    Н. И. Вавилов подразделял иммунитет растений на структурный (механический) и химический. Механический иммунитет растений обусловлен морфологическими особенностями растения-хозяина, в частности, наличием защитных приспособлений, которые препятствуют проникновению патогенов в тело растений. Химический иммунитет зависит от химических особенностей растений.

  4. Закон гомологических рядов наследственной изменчивости: у генетически близких видов и родов существуют гены, которые дают сходные признаки. Таким образом, можно предсказать наличие признаков у других видов известного рода.
  5. Установил, что наибольшее разнообразие форм вида сосредоточено в тех районах, где этот вид возник. Н. И. Вавилов выделил 8 центров происхождения культурных растений .

Центры происхождения культурных растений

Центры происхождения культурных растений - географические области, являющиеся родиной дикорастущих предков культурных растений.

Центры происхождения важнейших культурных растений связаны с древними очагами цивилизации и местом первичного возделывания и селекции растений. Подобные очаги одомашнивания (центры доместикации) выявлены и у домашних животных.

Было выделено восемь центров происхождения культурных растений (рис. 6):

1. Средиземноморский (спаржа, маслины, капуста, лук, клевер, мак, свекла, морковь).

2. Переднеазитский (инжир, миндаль, виноград, гранат, люцерна, рожь, дыня, роза).

3. Среднеазиатский (нут, абрикос, горох, груша, чечевица, лен, чеснок, мягкая пшеница).

4. Индо-Малайский (цитрусовые, хлебное дерево, огурец, манго, черный перец, кокосовая пальма, банан, баклажан).

5. Китайский (просо, редька, вишня, яблоко, гречиха, слива, соя, хурма).

6. Центральноамериканский (тыква, фасоль, какао, авокадо, махорка, кукуруза, батат, хлопчатник).

7. Южноамериканский (табак, ананас, томат, картофель).

8. Абиссинский центр (банан, кофе, сорго, твердая пшеница).

В поздних работах Н. И. Вавилова Переднеазиатский и Среднеазиатский центры объединяются в Юго-западноазиатский центр.

Рис. 6. Центры происхождения культурных растений

В настоящее время выделяют 12 первичных центров происхождения культурных растений.

Страница 2 из 4

Известно, что подавляющее большинство растений и животных размножается половым путем. Семенное потомство их возникает лишь в результате оплодотворения - слияния мужских и женских половых клеток, дающего начало новым организмам.
В отличие от вегетативного способа размножения (клубнями, черенками, почками и т. д.), при котором растущие организмы продолжают свое развитие с той стадии, до которой дошло развитие взятой для их получения ткани материнского куста, при половом размножении оплодотворенная яйцеклетка - зигота дает начало новому растению, начинающему свое развитие сызнова.
Процесс оплодотворения имеет громадную биологическую значимость, так как благодаря ему развивающиеся новые организмы приобретают двойственную наследственность - материнскую и отцовскую, а вследствие этого и большую жизненность, которая проявляется в лучшей их приспосабливаемости к разнообразным условиям внешней среды.
По Лысенко, биологическая роль процесса оплодотворения заключается в том, что путем объединения различающихся в определенной степени по своим наследственным свойствам женской и мужской половых клеток в одну клетку и слияния двух ядер их в одно ядро создается противоречивость живого тела, являющаяся причиной саморазвития, самодвижения, т. е. жизненного процесса с присущим ему обменом веществ.
Искусственное скрещивание различных сортов растений и пород животных широко используется в селекционной практике.
Решающими моментами при выведении новых высокопродуктивных сортов растений и пород животных с позиций материалистической мичуринской биологии является осмысленный и умелый подбор для скрещивания исходных родительских пар и дальнейшее управление формирующейся природой гибридного потомства регулированием условий жизни.

Путем многолетней упорной практической работы, имеющей под собой глубоко обоснованный фундамент, И. В. Мичурин последовательно, шаг за шагом, строил свою теорию половой гибридизации. Эта теория опровергает основные положения сторонников формально-генетической науки, утверждающих независимость наследственности организмов от условий их жизни и пропагандирующих «пресловутые гороховые законы Менделя», о применении которых в селекции многолетних культур, как писал Иван Владимирович, не стоит даже и мечтать. Он резко осуждал тех, кто работал по принципу: «Сыпь, подмешивай, болтай, авось что-нибудь выйдет другое». В противоположность этому девиз И. В. Мичурина гласит: «Мы не можем ждать милостей от природы: взять их у нее - наша задача».
Возражая против взглядов на наследственность, высказываемых сторонниками формально-генетической «науки», он не раз утверждал, что при неоднократном скрещивании одних и тех же исходных родительских пар в их последовательных потомствах никогда не получится одинаковое количество гибридов, у которых всегда доминировали бы строго определенные признаки отца или матери согласно менделевскому закону 3:1. Полученные растения во всех случаях скрещивания одних и тех же родительских пар по своим морфологическим и биологическим признакам не бывают тождественны, потому что наследование признаков родителей зависит как от подбора скрещиваемых сортов, так и от многих других причин.
Правильный подбор родительских пар невозможен без знания биологических закономерностей наследования гибридным потомством признаков и свойств родителей и наличия глубоких взаимосвязей между формирующейся природой растительных организмов и условий их воспитания, установленных И. В. Мичуриным, Т. Д. Лысенко и их последователями.
1. Чтобы получить новый сорт с желаемыми качествами, необходимо прежде всего подобрать для скрещивания такие растения, которые обладают хозяйственно ценными признаками, соответствующими селекционному заданию.
И. В: Мичурин неоднократно подчеркивал мысль о том, что современным селекционерам, как правило, незачем проходить опять путь, пройденный до них; благодаря наличию у организмов наследственности, они должны пользоваться результатами трудов многих поколений своих предшественников.
Эту же мысль проводил в своих трудах и Лютер Бербанк. Он образно сравнивал выбор растений для скрещивания с работой архитектора. Как архитектор подбирает строительный материал, соответствующий идейному замыслу будущего здания, так и селекционер намечает для скрещивания растительные формы, обладающие теми признаками, какие он хочет видеть в будущем сорте. При этом в распоряжении селекционера имеется несравненно более богатый и разнообразный материал, который он может привлечь к работе для осуществления своего замысла, чем то количество минералов или пород дерева, какое известно архитектору.
При выведении новых сортов, как указывает Т. Д. Лысенко, очень важно подобрать исходные формы по принципу наличия у них наименьшего количества отрицательных качеств, которые могли бы ограничить в данных конкретных условиях развитие в потомстве лучших признаков и свойств родителей.
2. И. В. Мичурин придавал важное значение сортовой и индивидуальной истории материнского и отцовского растений, т. к. знание ее позволяет предвидеть возможный характер наследования признаков родительских форм гибридным потомством.
«Самой энергичной способностью передачи своих свойств,- указывал Иван Владимирович, - обладают, во-первых, все растения чистых видов, растущих в диком состоянии, во-вторых, большей энергией отличаются все старые культурные сорта растений, а самыми слабейшими в этом отношении нужно считать недавно выведенные молодые сорта плодовых деревьев и ягодных кустов» *.

* И. В. Мичурин, Избранные сочинения, 1948, стр. 69.

Доминирование признаков диких растений при скрещивании их с культурными обусловлено наличием у них значительно более консервативной наследственности, чем у более поздно сформировавшихся в процессе деятельности человека культурных форм.
Еще Ч. Дарвин отмечал, что у растений и животных, распространенных в естественных условиях, не наблюдаются такие резкие и внезапные изменения, какие известны у прирученных животных и культурных растений. Надо полагать, что сам факт окультуривания, т. е. перемещения растений из естественных условий в новые - искусственные, и возделывание их в течение многих поколений под влиянием определенных приемов агротехники и фитотехники способствует формированию у них более пластичной наследственности и более активной реакции их на изменение условий окружающей среды, чем у диких форм.
3. Для получения гибридного потомства с пластичной наследственностью, способного в наибольшей степени поддаваться направленному воспитанию и дающего наиболее богатый по разнообразию форм материал для последующего отбора, И. В. Мичурин рекомендовал применять географически и генетически отдаленное скрешивание.
Как правило, при отдаленной (межвидовой или межродовой) гибридизации полученное гибридное потомство сравнительно легко приспосабливается к тем условиям жизни, которые ему предоставляются.
На большом практическом материале И. В. Мичурин доказал возможность скрещивания далеких по родству форм растений и широко использовал отдаленную гибридизацию в своей практической работе при выведении известных сортов: яблони - Бельфлер-китайка, Кандиль-китайка (гибриды между домашней и китайской яблоней), Бельфлер красный, Бельфлер рекорд (гибриды между домашней яблоней и яблоней Недзвецкого), Таежное (гибрид между Кандиль-китайкой и сибирской яблоней); груши - Бере зимняя Мичурина, Толстобежка, Раковка (гибриды между обыкновенной - культурной грушей и уссурийской); вишни - Краса севера, Бастард черешни (гибриды вишни с черешней); новых растений - церападусов (гибриды степной вишни с японской черемухой); сливы - Прозрачная желтая (гибрид сливы с абрикосом), Ренклод терновый, Терн сладкий (гибриды сливы с диким терном); виноград - Русский Конкорд, Металлический, Буйтур (гибриды между американскими и амурским видами), Коринка Мичурина (гибрид между амурским и культурным видами винограда). Известны также его сорта - гибриды рябины с мушмулой, рябины с боярышником, малины с ежевикой и т. д.
Метод отдаленной гибридизации нашел широкое применение в работе советских селекционеров, так как он открывает большие возможности получения новых форм полезных растений.
Отдаленные по родству растения могут быть также далекими по географическому происхождению и по условиям среды, в которых каждое из них сформировалось.
Скрещивание географически отдаленных растений и воспитание их гибридного потомства желательно проводить в новых природных условиях, чуждых как материнскому, так и отцовскому родителям. В этом случае, согласно мичуринскому учению, как бы исключаются те условия, которые необходимы для сильного проявления в потомстве признаков ближайших предков. Классическим примером практического использования этого положения может служить получение И. В. Мичуриным в условиях Тамбовской области нового высококачественного зимнего сорта груши Бере зимняя Мичурина.
Ему долго не удавалось получить новый сорт груши с плодами хороших вкусовых качеств, пригодными для длительного зимнего хранения. С этой целью он проводил многочисленные скрещивания высококачественных западноевропейских зимних сортов груши (Бере Диль, Бере Клержо, Бере Лигеля, Сен-Жермен) с местными сортами (Тонковетка, Царская, Бессемянка). Однако выращенные сеянцы не обладали желаемым свойством вследствие доминирования у потомства раннего срока созревания плодов, свойственного местным сортам груш. Лишь путем скрещивания итальянского сорта груши Бере Рояль с молодым, впервые зацветшим сеянцем уссурийской груши (родина этого вида груши - Дальний Восток) он получил гибриды с плодами летнего, осеннего и зимнего созревания. Один из них оказался особенно ценным, так как унаследовал наилучшие свойства обоих родителей - морозостойкость, присущую уссурийской груше, и величину плодов, прекрасный десертный их вкус, а также способность к длительному хранению в свежем виде, присущие сорту Бере рояль.
4. На основании многолетних экспериментов и наблюдений И. В. Мичурин открыл еще одну важную закономерность: в процессе скрещивания сортов, равноценных в смысле консерватизма наследственности материнский организм, будучи естественным ментором, как правило, более полно передает свои признаки и свойства потомству, чем отцовский.
Руководствуясь этой закономерностью, советские селекционеры при проведении скрещиваний в роли материнского родителя часто подбирают то растение, хозяйственно ценные признаки и свойства которого желательно видеть в потомстве. Если же возникает необходимость ослабить индивидуальную силу наследственной передачи материнского родителя, то необходимо подбирать в роли матери молодой, впервые цветущий сеянец, с уже расшатанной предварительной гибридизацией наследственностью.
5. Иван Владимирович Мичурин - первый селекционер, применивший для скрещивания смесь пыльцы различных сортов. Правда, он использовал метод смеси пыльцы, в основном в целях преодоления нескрещиваемости при гибридизации растений, отдаленных в родственном отношении, однако последователи его доказали целесообразность применения смеси пыльцы ряда сортов и при обычных скрещиваниях.
Еще Дарвин отмечал, что скрещивание особей, подвергавшихся на протяжении жизни предыдущих поколений различным условиям, оказывает благоприятное действие на потомство, так как в этом случае их половые клетки являются в той или иной степени дифференцированными. При самоопылении цветков такой дифференциации половых элементов не наблюдается, поэтому влияние его на потомство неблагоприятно.
Это наблюдение послужило основанием для другого важного заключения Ч. Дарвина о наличии обязательной избирательности половых элементов растений в естественных условиях. И. В. Мичурин и Т. Д. Лысенко развили дарвинское положение о наличии избирательности оплодотворения растений и доказали, что наследование признаков родителей потомством при искусственной гибридизации находится в большой зависимости от избирательного характера процесса оплодотворения, причем эта зависимость имеет двойственный характер.
Далеко не каждое пыльцевое зерно биологически соответствует определенной яйцеклетке, поэтому чем больше пыльцевых зерен различных сортов наносится при опылении на рыльце кастрированного цветка, тем более широкая возможность предоставляется материнскому растению выбрать наиболее приемлемые из них. Многочисленными экспериментами мичуринцев доказано, что при наличии большого выбора пыльцы цветками оплодотворение происходит активнее, завязавшиеся семена оказываются значительно жизнеспособнее и богаче питательными веществами, а выросшие из них растения - более урожайными.
Кроме того, при опылении смесью пыльцы в результате взаимодействия пыльцевых зерен различных сортов создается качественно новая физиологическая среда, более благоприятная, чем при обычном опылении.
И. В. Мичурин обращал внимание селекционеров и на другую сторону этого процесса. Далеко не всегда при искусственной гибридизации следует ожидать получение относительно более жизнеспособного потомства. Ведь зачастую в качестве родителей привлекаются биологически не соответствующие друг другу растения, скрещивание которых является принудительным. Например, при отдаленной гибридизации иногда получаются растения, не способные к построению даже наиболее жизненно важных органов. Тем не менее, Т. Д. Лысенко подчеркивает, что избирательной способностью растений необходимо пользоваться для получения резких изменений наследственности путем принудительного скрещивания с теми особями, пыльцу которых не избрал бы материнский организм в естественных условиях.
В этой области мичуринская агробиологическая наука выдвигает новые, еще не разрешенные проблемы, имеющие важное теоретическое значение.
Для практических селекционных работ смесь пыльцы для скрещивания подбирается по тем же принципам, которые отмечены ранее, т. е. учитывается селекционное задание, хозяйственно ценные качества родительских сортов (в том числе нескольких отцовских), их биологические особенности и история происхождения.
6. Не всегда путем однократного скрещивания заранее подобранных с учетом указанных закономерностей доминирования наследственности родительских пар селекционеру удается получить гибридное потомство с желаемыми признаками. Чтобы добиться осуществления своей цели, иногда полезно прибегнуть к повторному скрещиванию лучших из полученных гибридных растений с одним из родителей или с каким-либо другим сортом, обладающим нужными качествами.
Придавая исключительное значение повторному скрещиванию первого гибридного поколения плодовых культур, полученных в средней полосе России, с южными сортами, И. В. Мичурин настойчиво указывал селекционерам: «Далее, самым существенно важным в деле выведения новых сортов плодовых растений нужно считать третий способ - способ повторного скрещивания гибридов с лучшими культурными (и иностранными) сортами... Здесь мы в большинстве случаев получим значительное общее улучшение как от влияния введенного в скрещивание сорта с новыми хорошими свойствами, так и от более легкой восприимчивости гибрида в его молодом возрасте и притом еще корнесобственного» *.

* И. В. Мичурин, Соч., т. 1, 1948, стр. 496-498.

В то же время он предостерегал от использования в суровых климатических условиях сеянцев второй или даже третьей генерации от естественного опыления, потому что новые, получаемые при этом формы уклоняются в основном в худшую сторону вследствие повторного отрицательного влияния местных факторов среды на доминирование признаков родителей.
Установленные И. В. Мичуриным, Т. Д. Лысенко и их учениками закономерности доминирования наследственности растений распространяются и на культуру виноградных лоз.
Многолетними исследованиями, проведенными отделом селекции и сортоизучения Украинского научно-исследовательского института виноградарства и виноделия им. Таирова (П. К. Айвазян) установлено, что в первом и втором семенных потомствах половых гибридов наблюдается довольно сложная картина наследования признаков родителей. У одних сеянцев могут преобладать признаки одного родителя, у других - другого, у третьих - может иметь место промежуточное наследование признаков и, наконец, известны случаи, когда в гибридном потомстве появляются совершенно новые признаки и свойства, полностью отсутствовавшие у исходных родительских пар.
Как правило, самыми константными в смысле наследственности оказываются дикорастущие формы чистых видов: Витис Рипариа, Витис Рупестрис, Витис Лабруска, Витис Амурензис и т. д., поэтому при межвидовой гибридизации винограда сеянцы первого потомства, полученные от скрещивания культурного винограда с американскими дикими видами и подвойными сортами и выращиваемые в обычных агротехнических условиях, преимущественно наследуют признаки диких родителей. При этом большая часть растений, уклонившаяся по морфологическим признакам в сторону диких форм, наследует от материнских растений (европейских сортов) неустойчивость к поражению мильдью и низкую морозостойкость, а от отцовских сортов (диких форм) - низкое качество урожая. Сеянцы, приближающиеся по морфологическим признакам к культурным сортам, уступают по качеству урожая материнскому культурному сорту.
Небольшое количество межвидовых гибридов, обладающих практической устойчивостью к мильдью и морозу, по своим морфологическим признакам (побеги и листья), а также по количеству и качеству урожая приближаются к диким видам. Такие сеянцы представляют интерес для повторной и вегетативной гибридизации.
Исследования показали также, что при межвидовой гибридизации лучше всего брать в качестве материнских растений стародавние аборигенные сорта винограда с хорошим качеством урожая. Такие сорта, сформировавшиеся в местных условиях и обладающие более устойчивой наследственностью, легче передают гибридному потомству свои признаки и свойства, чем интродуцированные.
В гибридном потомстве, полученном от повторных скрещиваний межвидовых гибридов с высококачественными сортами, как и следовало ожидать, значительная часть сеянцев представляет собой дикие формы. Получение и в этом случае большого количества сеянцев, отклоняющихся по своим признакам от культурных растений, можно объяснить тем, что в происхождении одного из родителей принимали участие дикие разновидности, которые в силу давности существования отличаются исключительной способностью сохранять свои наследственные свойства.
В пределах одной и той же гибридной комбинации, при одинаковых условиях среды, сорт полнее передает потомству свои признаки и свойства (урожайность, силу роста кустов, величину гроздей и ягод, окраску ягод и сока, качество урожая, устойчивость растений против неблагоприятных условий и другие) в том случае, если он взят в качестве материнского растения. Обеспечивая гибридный зародыш в наиболее молодом его возрасте, начиная с момента образования зиготы, необходимыми питательными веществами, материнский организм как ментор соответственно влияет на формирование наследственности потомства.
Правильный подбор исходных родительских сортов для скрещивания является лишь первым этапом селекционной работы, заканчивающимся получением гибридных семян. Последующий процесс формирования наследственности сеянцев представляет собой весьма сложное биологическое явление, совершающееся под влиянием условий среды и часто сопровождающееся проявлением у них ряда глубоких изменений.

В гетевские времена, как вспоминал сам Гете, в Карлсбаде - на карте не ищите, теперь это Карлови Вари - на водах отдыхающие любили определять в букетах растения по Линнею. Эти букеты пьющим в тени колоннады минеральные воды (гидрокарбонатно-сульфатно-хлоридно-натриевые - к сведению собирающихся в Karlovy Vary) доставлял ежедневно молодой красивый садовник, вызывающий у бледных одиноких дам повышенный интерес.

Правильное определение каждого растеньица было делом чести и успеха у садовника, поощрявшего за скромную плату невинные ботанические увлечения. Трудно сказать почему - из-за ревности ли к садовнику, или к Линнею, но поэт жестко разошелся с Линнеем в принципах систематики растений. Линней, как известно, искал в растениях различия, Гете же стал искать общее и этим, надо сказать, сделал первый шаг к генетической систематизации растений.

Увлечение женщин ботаникой можно было понять: система Линнея была до изумления проста и понятна. Это вам не «Определитель высших растений европейской части СССР» Станкова-Талиева более чем в тысячу страниц, приводящий студентов в предынфарктное состояние.

Линней, сроду не любивший арифметики, тем не менее заложил ее, можно сказать, в основу своей системы. Он подразделил растения на 24 класса, из которых 13 выделены по числу тычинок. Растения с одной тычинкой в каждом цветке помещены в первый класс, с двумя - во второй и так далее до десятого класса, к которому отнесены растения с десятью тычинками. Класс 11-й включал растения с 11-20 тычинками, 20 и более тычинок в цветке говорило о принадлежности к 12-му и 13-му классу. Эти два класса различали по уровню расположения основания тычинок относительно места прикрепления пестика. Растения 14-го и 15-го классов имеют тычинки неравной длины. В цветах классов 15-20-го тычинки у растений сращены между собой или с пестиком. В 21-й класс были помещены однодомные растения, имеющие частью тычиночные, частью плодущие (пестичные) цветки. В 22-й класс попали двудомные растения, развивающие на одних растениях лишь тычиночные, на других - только плодущие цветки. Класс 23-й включал растения с хаотичным разбросом мужских и женских цветков (в том числе порою и совместном) на растении. В 24-м классе были объединены «тайнобрачные» растения - все бесцветковые растения, начиная с папоротникообразных и кончая водорослями. Названы последние «тайнобрачными» по той причине, что ботаники не знали, как они размножаются. Это сейчас биологам известны их организация и размножение лучше, чем цветковых растений.

Линней отнес 20 из 23 классов к явнобрачным обоеполым цветкам. Именно их он посчитал правилом в растительном царстве, остальные - любопытным исключением. Оно вроде бы логично, для растений удобнее - тычинки и пестики рядом, значит, брак без заминки; итог любви - плод и семя появляются в результате самоопыления, зашифрованного биологами латинским словом autogamia.

Уже после Линнея выяснилось, что некоторые растения имеют лишь с виду обоеполые цветки. Хотя у них в цветках рядом и тычинки, и пестики, но пыльцевые клетки в пыльниках недоразвиты и все растение евнух евнухом - смотреть противно. Другие цветки сами себя не могут оплодотворить, но их пыльца способна к производству потомства при опылении пестиков чужих растений.

Поскольку повелось исстари у ботаников все называть латинскими именами, то совокупность тычинок цветка они наименовали андроцеем, а совокупность пестиков (или просто пестик) - гинецеем. Но так как ни один ученый на уже достигнутом однажды ни за что не остановится, то ботаники в дальнейшем в зависимости от строения цветков подразделили их на обоеполые (содержат андроцей и гинецей) и однополые (содержат либо андроцей, либо гинецей). Если мужские и женские цветки расцветают на одном растении, его называют однодомным (кукуруза), если же на разных - двудомным (конопля). У полигамных видов на одном растении бывают обоеполые и однополые цветки (дыня, подсолнечник). Однако, по-видимому, в пику ученым-ботаникам природа порой подставляет их пытливому оку все формы перехода от одного полового типа цветка и растений к другому, вплоть до пустоцветов, вовсе лишенных тычинок и с недоразвитыми пестиками.

Чрезвычайно раздражающее огородников сорное растение мокрица, или топтун, имеет в двух пятичленных мутовках десять тычинок, из которых обыкновенно 5 внутренних с некоторым добавлением таковых же из внешней мутовки сморщены и лишены пыльцы. Цветковые головки черноголовника (Poterium polygamum) содержат кроме чисто плодущих и чисто тычиночных цветков еще и настоящие обоеполые цветки. Они представляют все примеры перехода от настоящих обоеполых к цветкам чисто материнского типа. Кстати, этот ботанический род исключителен среди розоцветных своей склонностью к ветроопылению.

Необычайно разнообразны также степени обособления среди ложнообоеполых плодовитых и тычиночных цветков. Бодяк, спаржа, хурма, виноград, некоторые скабиозы, камнеломки, валерьяны имеют цветки на первый взгляд обоеполые. В них хорошо развиты пестики, видны и тычинки, в пыльниках которых может быть или отсутствовать пыльца. В последнем случае это ложнообоеполые цветки. Что делать, и в природе «лжедмитрии» встречаются. То же самое можно сказать и о части цветков в кистях конских каштанов и некоторых видов щавеля, а также в цветках в центре корзинок мать-и-мачехи и ноготков, имеющих вид настоящих обоеполых цветков, но чьи завязи не дают всхожих семян, так как рыльце не способно пропускать через себя пыльцевые трубки.

В кистях явора (один из видов клена) можно заметить все возможные переходы от ложнообоеполых тычиночных цветков с хорошо развитыми крупными завязями к таким, в которых пестики недоразвиты или совершенно отсутствуют. Переходы от настоящих обоеполых цветков к пустоцветам можно встретить у нескольких видов степного гиацинта.

Известны также трехдомные виды: у них одни растения несут только мужские, другие - только женские, а третьи - обоеполые цветки (смолевка). Из курьезов растений можно отметить смену пола с возрастом или в отдельные годы. Виноград сердцевидный, относящийся на своей родине к типично двудомным, в Венском ботаническом саду представлен кустами с тычиночными цветками. Но в некоторые годы виноградные кусты приводят экскурсоводов в замешательство, поскольку образуют кроме тычиночных настоящие обоеполые цветки.

У многих растений самооплодотворению препятствует неодновременное созревание тычинок и пестиков в цветке - дихогамия (подсолнечник, малина, груша, яблоня, слива), при которой различают протерандрию, когда тычинки пылят раньше созревания пестиков, и протогинию, когда пестики созревают раньше тычинок.

Главным образом протерандричны сложноцветные, губоцветные, мальвовые, гвоздичные и бобовые; протерогиничны ситники и ожики, кирказоновые и дафниевые, жимолостные, глобуляриевые, пасленовые, розоцветные и крестоцветные. Протерогиничны все однодомные растения: осоки, рогозы, ежеголовники, ароидные с однодомными цветками, кукуруза, однодомная крапива жгучая, уруть, черноголовник, дурнишник, бешеный огурец, молочайные растения, ольха, береза, грецкий орех, платан, вяз, дуб, орешник, бук. У названных здесь деревьев и кустарников пыльники начинают пылить с опозданием в 2-3 дня. У альпийской зеленой ольхи эта разница равна 4-5 дням, а у мелкого рогоза - даже девяти.

Большей частью протерогиничны двудомные растения. В больших ивовых зарослях по не травленным химией берегам наших рек некоторые виды все еще представлены многочисленными кустарниками. Часть их несет тычиночные цветки, другая - пестичные. Они практически находятся в одних условиях, но, несмотря на одинаковые внешние условия в одной и той же местности, кусты с пестичными цветками всегда ловко опережают в цветении своих «мужчин» с тычиночными цветками. У белотала, пурпурного лозника, корзиночной вербы и ракиты рыльца в своем созревании на 2-3 дня опережают вскрытие тычиночных цветков. То же самое у альпийских ив - убедитесь, если доведется побывать в Альпах. Но тут разница во времени ограничена всего лишь одним днем, из чего правомерно заключить, что наши ивы - самые протерогиничные ивы в мире.

У растений конопли, растущих рядом, в начале цветения можно заметить рыльца, готовые к восприятию пыльцы, хотя ни единый тычиночный цветок еще не раскрыт - они раскроются лишь через 4-5 дней. У пролески, или кур-зелья, растущей по лиственным лесам и кустарникам, рядом расположены материнские и отцовские особи. Тем не менее пестичные цветки у них открываются за два дня до тычиночных. То же у хмеля и многих других двудомных растений.

У немногих растений самооплодотворение затруднено из-за такого расположения тычинок и пестиков, при котором пыльце трудно попасть на рыльце пестика своего цветка. Например, при гетеростилии одни особи имеют цветки с длинными пестиками и короткими тычинками, а другие - наоборот. К гетеростильным (разностолбчатым) относятся некоторые горечавковые (например, вахта, или трилистник), гречиха, различные виды ленца, многочисленные первоцветные (к примеру, проломник, турча, примула, или первоцвет), а также многие бурачниковые (незабудки, медуница и др).

Вахта обладает очень изящными мохнатыми белорозовыми цветками-звездочками, собранными кистью на безлистном стебле. Одни цветки обладают низким столбиком и укрепленным над ним пыльником, другие, напротив, - высокими столбиками и укрепленными под ними пыльниками. Рыльца у растения созревают раньше тычинок. Насекомые, посещающие цветки вахты, касаются одной и той же частью своего тела то пестиков, то тычинок, осуществляя строго перекрестное опыление. Однако в долгое ненастье цветок закрыт и вынужден самооплодотворяться.

Примула, среди детей более известная как баранчики, распускает цветки одной из первых среди весенних цветов. Отсюда и латинское название primus - первый. Опыляют растение только шмели и бабочки. Благодаря разностолбчатости пестики одних цветков могут быть опылены пыльцой только с других цветков. Если шмель садится на цветок с низким пестиком, он касается головой высокостоящих тычинок. Перелетая на цветок с высокостоящим пестиком, он касается головой рыльца и производит перекрестное опыление.

Явление разностолбчатости впервые было открыто на цветках турчи болотной, а потом и на других растениях. Первенство турчи в этом отношении кажется даже невероятным, если учесть, что все растение погружено в воду, и только в июле цветки появляются над водой. Другая примечательность турчи в том, что корней она не имеет, и всасывающие функции у нее исполняют клетки кожицы листьев.

У гречихи, по клятвенному заверению генетиков, длинностолбчатость контролируется рецессивной аллелью s, а короткостолбчатость - доминантной аллелью S (напоминаем, что аллель - одна из форм coстояния одного и того же гена). Поскольку опыления в пределах одного типа цветка не происходит, то в популяциях все время поддерживается равное соотношение растений с генотипами Ss и ss; это видно из решетки Пеннета, известной из школьного курса биологии:

то есть расщепление 1:1, как и у человека, на мальчиков (АТ) и девочек (XX) в потомстве.

По строению цветка гречиха приспособлена к перекрестному опылению преимущественно насекомыми (мухами, шмелями и особенно пчелами), которых привлекает нектар, и лишь отчасти - ветром. При нормальном (легитимном) опылении, когда пыльца коротких тычинок попадает на рыльца коротких столбиков и, соответственно, пыльца длинных тычинок - на рыльца длинных столбиков, завязывается наибольшее количество семян.

Плакун-трава (Lythrum salicaria) - одно из самых интересных наших растений. Дело в том, что цветки плакун-травы имеют пестики трех различных величин и 12 тычинок, расположенных поровну в два круга. В одних цветках пестик выше обоих кругов тычинок, в других - он находится между ними и в третьих - ниже обоих кругов. Следовательно, тычинки располагаются на различных высотах так же, как и пестики, что обеспечивает перекрестное опыление. Насекомое, прилетая за нектаром, вымазывается пыльцой и отдает ее на рыльце пестика, по длине соответствующего тычинке, с которой снята пыльца. Оплодотворение происходит нормально, когда пыльца переносится с тычинки, одинаковой по длине с пестиком. Зерна пыльцы с тычинок трех различных высот разнятся между собой по величине и отчасти по цвету, а соответственно этому длина сосочков на рыльцах трех различных высот также различная, - ведь рыльца должны улавливать разную пыльцу. Процесс опыления в деталях впервые исследован Ч. Дарвином.

У некоторых растений тычинки и пестики расположены в строгой очередности, подставляясь насекомым для «разгрузки» пыльцы или «погрузки» рыльца. У нашей руты обыкновенной, встречаемой на склонах и холмах в лесах Южного Крыма, цветок содержит десять пыльников, поддерживаемых прямыми, расположенными звездой нитями. Сначала поднимается одна нить, устраивая поддерживаемый ею пыльник в середине цветка по линии, ведущей к нектару, который выделяется мясистым кольцом у основания пестика. Она сохраняет такое положение около суток, затем возвращается в прежнее положение. В то время как первая тычинка отгибается, поднимается другая - и все повторяется. Это продолжается, пока все десять пыльников, один за другим, не постоят в середине цветка. Когда, наконец, и десятая тычинка отогнется назад, в центре цветка оказывается рыльце, ставшее в это время восприимчивым к опылению.

В обоеполых цветках постенницы из семейства крапивных рыльце развивается еще до распускания цветка и первым выдается из зеленоватого бутона цветка. Пыльники на согнутых ножках, словно на пружинах, закрыты смыкающимися мелкими зеленоватыми покроволистиками. Но прежде чем они позволят пыльникам подняться с «колен», выпрямиться и рассеять свою пыльцу в виде облачка в воздухе, рыльце вянет и столбик отделяется вместе с рыльцем от завязи. Так что ко времени освобождения пыльцы из пыльников завязь оканчивается острием - засохшим основанием отпавшего столбика.

Обычно у растений все это происходит иначе: сначала в цветке опадают пыльники и тычинки, и лишь после этого рыльце приобретает способность воспринимать пыльцу. В цветках бальзамина пыльники срощены между собой и образуют нечто вроде колпачка над рыльцем. После того как цветок раскрылся и сделался доступным прилетающим насекомым, пыльники тотчас растрескиваются, и перед нами предстает образованный вскрывшимися пыльниками колпачок. Но вот нити тычинок отделяются, и колпачок вываливается из цветка. Лишь теперь показываются рыльца, вполне уже созревшие. То же можно наблюдать у крупноцветковых видов журавельника и герани.

В обоеполых цветках традесканции, разводимой дома и по недоразумению называемой «бабьими сплетнями», пыльники вскрываются чуть раньше, чем рыльца станут восприимчивыми к пыльце. Но как только рыльце готово к опылению, тычинки свертываются в спираль, а вскоре за этим увядают покроволистики, покрывающие собой пыльники на свернувшихся нитях. Столбик же выдается, и рыльца восприимчивы к пыльце еще весь следующий день. Эти цветки навещают насекомые с короткими хоботками, чтобы полакомиться соком смятых покроволистиков, скрывающих тычинки, при этом они касаются рылец и опыляют их пыльцой, принесенной с других цветков. Опыление же пыльцой своих пыльников уже невозможно.

Дихогамии ботаники, опирающиеся в своих изысканиях лишь на морфоэкологические различия, без учета содержания геномов, обязаны изобилию видов осок, бесконечно вновь открываемых, а то и переоткрываемых. Тем более что так называемые «виды» осок легко скрещиваются друг с другом, выдавая множество промежуточных форм, охотно принимаемые за новые «виды» (авторов видов привлекает возможность увековечить свое имя в латинской транскрипции). Несовершенная (неполная) дихогамия у ботанических родов с однодомными цветками обеспечивает, например, у осок вначале так называемое межвидовое, а позднее внутривидовое скрещивание. Это понятно, так как рыльце самого первого расцветающего растения протерогиничного вида может быть опылено только пыльцой других, еще раньше зацветших «видов».

Лысенко считал, что «диалектический материализм, развитый и поднятый на новую высоту трудами товарища Сталина, для советских биологов, для мичуринцев является самым ценным, наиболее мощным теоретическим оружием в решении глубоких вопросов биологии, в том числе и вопроса о происхождении одних видов из других». Потому и дано им сверхдиалектическое определение вида на этой новой высоте: «Вид - это особенное, качественно определённое состояние живых форм материи. Существенной характерной чертой видов растений, животных и микроорганизмов являются определённые внутривидовые взаимоотношения между индивидуумами». Вот так-то.

Не все ботаники желают видеть, что в диалектическом единстве формы и содержания определяющим является содержание. Содержание же вида - это единство генетического строения популяций, его составляющих. Внешне оно проявляется в фенотипическом сходстве, свободной скрещиваемости, особенно же в способности давать плодовитое потомство при скрещивании. Наследственная информация - вот то, что качественно определяет вид и составляет его содержание. Трудно сказать, возникла ли жизнь одновременно с наследственностью (подозреваю, что одновременно), но одно не вызывает сомнений: с появлением дискретной наследственности на земном шаре появились виды.

С учетом известных науке формулировок определение вида может быть таким: вид - качественно обособленное на данном этапе эволюционного процесса, сложное и подвижное сообщество организмов, характеризующееся единством происхождения, общностью генетической конституции, наследственной устойчивостью и плодовитостью потомства . Большинство выделенных «видов» осок и ив этому определению не соответствуют.

При выделении «хороших», или настоящих, видов по скрещиваемости и образованию плодовитого потомства нельзя забывать о явлении самонесовместимости - невозможности самооплодотворения у некоторых гермафродитных организмов или перекрестного оплодотворения между особями вида с одинаковыми генетическими факторами несовместимости. Основная функция систем самонесовместимости - предотвращение самооплодотворения и содействие скрещиванию между неродственными особями.

Различают гаметофитную, спорофитную и гетероморфную самонесовместимость. Гаметофитная самонесовместимость - самая распространенная (злаковые, свекла, люцерна, плодовые, картофель и др.). Эта система характеризуется независимым действием в пыльце и столбике двух аллелей локуса несовместимости S. присутствующего в каждой особи. Например, пыльца растения с генотипом S 1 S 2 ведет себя как S 1 или S 2 в зависимости от того, какую аллель содержит пыльцевое зерно. Ни одна из аллелей не проявляет доминирования или иной формы межаллельного взаимодействия. Такая же полная независимость действия наблюдается и в столбике.

Реакция несовместимости проявляется в столбике пестика: рост пыльцевых трубок, несущих данную аллель, прекращается в столбиках, содержащих идентичную аллель. Если все аллели, участвующие в гибридизации, различны, например S 1 S 2 XS 3 S 4 , то все пыльцевые трубки совместимы, завязь получается нормальной и в потомстве образуются 4 перекрестно совместимых генотипа. У огромного большинства изученных видов гаметофитной несовместимостью управляют один-два локуса.

Спорофитная несовместимость впервые была описана у гваюлы. При спорофитной самонесовместимости поведение каждого пыльцевого зерна зависит от генотипа столбика. Так, если S 1 доминирует над S 2 , вся пыльца растения S 1 S 2 будет реагировать как S 1 и сможет проникать в столбики, несущие аллель S 2 , независимо от генотипа пыльцевой трубки - S 1 или S 2 .

Гетероморфная несовместимость возникает на основе гетеростилии, уже описанной нами ранее.

Одним из приспособлений растения для осуществления перекрестного оплодотворения служит мужская стерильность. В последние десятилетия мужская стерильность у культурных растений вызывает у селекционеров и семеноводов огромный интерес, так как позволяет в широких масштабах получать гетерозисные гибриды первого поколения, которые дают прибавки урожая до 40 процентов по отношению к обычным сортам, отличаются ранним и дружным созреванием, высокой выравненностью и устойчивостью к неблагоприятным факторам среды.

К настоящему времени описаны цитоплазматическая мужская стерильность (ЦМС) и генная мужская стерильность (ГМС), контролируемая генами ядра клетки. Цитоплазматическая мужская стерильность у растений обусловлена взаимодействием стерильной цитоплазмы (S) с 1-3 парами рецессивных генов ядра (rf). В присутствии доминантных генов ядра (RF) восстанавливается фертильность пыльцы. ЦМС широко используется для получения гетерозисных гибридов в промышленных масштабах у кукурузы, сорго, Сахарной свеклы, лука, моркови. Как правило,

для использования ЦМС в семеноводстве гибридов первого поколения (они обозначаются F 1) используют фертильные закрепители стерильности с генотипом Nrfrf (N - нормальная цитоплазма), их стерильные аналоги - Srfrf и восстановители фертильности - RfRf.

Генная мужская стерильность используется для получения гетерозисных семян у томатов, перца, ячменя. При производстве гибридных семян на основе одного рецессивного гена ГМС расщепление в Fi идет по Менделю в соотношении 3 фертильных: 1 стерильное растение, поскольку, в отличие от ЦМС, мужская стерильность передается как через женские, так и через мужские гаметы.

Скрещивания, как известно, широко применяются в селекции и семеноводстве растений. Возможность искусственного получения гибридов впервые предположил немецкий ученый Р. Камерариус в 1694 году, и, как это часто бывает, ему никто не поверил. Только в 1760 году немецкий ботаник и почетный член Петербургской академии наук Йозеф Кёльрёйтер получил гибрид перуанского табака метельчатого с махоркой. С этого года ученые начинают сознательную гибридизацию.

В зависимости от степени родства скрещиваемых форм различают внутривидовую и отдаленную - межвидовую и межродовую гибридизацию. Если в скрещивании участвуют две родительские формы, говорят о простой, или парной, гибридизации, если более двух - о сложной. Различают прямые (A×B) и обратные (В×А) скрещивания, носящие в целом название реципрокных. Скрещивание гибридов с одним из родителей, например (A×B)×A или (А×В)×В, называют беккроссом, или возвратным.

Для обозначения гибридов и родительских форм используют символы: Р - родительская форма; F 1 - гибрид первого поколения; F 2 - второго и т. д.; В 1 , или ВС 1 , - первое поколение беккросса; В 2 , или ВС 2 - второе и т. д. Материнскую форму обозначают значком ♀, отцовскую - ♂. Впрочем, чаще всего обходятся без последних, помещая в записи комбинации скрещивания материнскую форму на первое место, а отцовскую - на второе.

Методика и техника скрещивания зависят от биологии цветения и опыления, оплодотворения, особенностей строения цветков (обоеполые, раздельнополые), расположения последних на растении и в соцветии, от способа опыления, продолжительности сохранения жизнеспособности пестика и пыльцы и условий скрещивания.

Селекционеры используют принудительное, ограниченно-свободное и свободное скрещивания, для осуществления которых часто необходима кастрация растений. Кастрация заключается в удалении незрелых пыльников или их повреждении подрезанием, термической стерилизацией (горячим воздухом или водой) или химической кастрацией - применением специально подобранных гаметоцидов.

При принудительном скрещивании кастрированные и изолированные материнские растения опыляют пыльцой отцовского растения. При свободном скрещивании родительские формы высевают чередующимися рядками. Кастрированные, мужскистерильные или биологически женские материнские растения опыляются пыльцой произрастающих рядом отцовских растений.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

КЕНТАВРЫ В МИРЕ РАСТЕНИЙ

"Кентавры" в мире растений. Достижения российских, европейских и американских учёных. Как появилась слива и всеми любимая клубника. Создание новых сортов пшеницы. Главное достижение российских ученых - капусторедька.

Еще один, не менее древний способ получения новых сортов растений и пород животных - это скрещивание, или, как говорят ученые, гибридизация между собой разных видов. Представьте себе, что в руках агронома оказалось два растения, каждое из которых обладает какими-то полезными свойствами. Естественно, очень заманчивой выглядит идея получить одно растение, которое совмещало бы в себе признаки их обоих. Как осуществить эту идею? Конечно, скрестить между собой оба эти растения. Этим приемом люди начали пользоваться еще в далекой древности, сначала неосознанно - просто отбирая время от времени возникающие в природе естественные гибриды, затем - целенаправленно скрещивая разные формы. Примеров тому огромное множество. Взять хотя бы такое всем известное культурное растение, как слива. Наверное, мало кто из вас знает, что в дикой природе нет такого вида растений. Слива - это гибрид, возникший в результате естественной гибридизации двух других видов - терна и алычи, и сочетающий свойства и того, и другого растения. В горах Кавказа и сейчас иногда можно обнаружить дикие гибриды этих видов. Обыкновенная - это тоже результат межвидовой гибридизации в природе. Она появилась еще в глубокой древности от скрещивания черешни со степной вишней - неказистым кустарником, не превышающим в высоту 1-2 метров.

Но, как известно, люди очень редко довольствуются только тем, что дает им природа. Очень быстро они научились сами скрещивать различные дикие виды в результате чего появились такие гибриды, которых природа никогда не знала. Перечислим лишь несколько примеров. Так, любимая всеми садовая земляника (ее у нас часто неправильно называют клубникой) произошла от гибридизации двух диких видов земляники - чилийской и виргинской. И хотя предки ее родом из Америки, выведена она все же в Европе. Широко использовал межвидовую гибридизацию американский селекционер Бербанк. Пожалуй, одним из самых примечательных его достижений было создание четырехвидового гибрида карликового съедобного скороспелого каштана, дающего плоды уже на второй год после посева.

Подлинной сенсацией стало в свое время создание американским генетиком Н.Борлоугом так называемых короткостебельных пшениц. Исследователь случайно обнаружил в коллекции пшениц США чрезвычайно низкорослую пшеницу, которую издавна выращивали в Индии. Наличие короткого стебля - очень важное качество для зерновой культуры - в противном случае большая часть питательных веществ идет на рост стебля, а не на образование зерна. Вот и получалось: соломы много, а зерна - не очень. Борлоуг скрестил эту пшеницу с другой карликовой формой - на этот раз японской (у нее удалось обнаружить целых три гена карликовости). На основе этих двух форм американскому селекционеру удалось вывести сразу несколько превосходных карликовых и полукарликовых сортов пшеницы, которое в настоящее время повсеместно выращиваются в тропических и субтропических районах земного шара. Только благодаря этому достижению генетики и селекции удалось поднять урожаи зерна в два, а кое-где и в три раза!

Чрезвычайно трудной, однако успешно завершившейся, была работа английских селекционеров по гибридизации дикорастущего диплоидного вида ежевики с тетраплоидной культурной ежевикой, отличавшейся необыкновенно вкусными плодами, но крайне позднеспелой. Вначале исследователям повезло: случайно была найдена ежевика без шипов. Но, несмотря на многочисленные усилия по скрещиванию этих двух видов, удалось получить всего лишь четыре гибридных сеянца и, увы, все с шипами. Кроме всего прочего, три из них были триплоидными (то есть с тройными наборами хромосом) и, соответственно, семян не дали. Но последний сеянец обрадовал ученых - он оказался плодоносящим тетраплоидом. Когда дождались плодоношения, посеяли и вырастили новое потомство, было обнаружено, что 37 растений без шипов, а 835 несут шипы. Из первых отобрали одно и скрестили с колючим культурным сортом. В новом потомстве на каждые три растения с шипами пришлось по одному без шипов. Из бесшипных селекционерам приглянулось только одно растение - оно и стало родоначальником знаменитого английского сорта Мертон Торн лесс.

Однако подлинным шедевром селекции по праву считается получение настоящих растительных «кентавров» - гибридов между растениями, принадлежащими не только к разным видам, но и к разным родам. Самые известные из таких опытов - это работы российского селекционера Г.Д.Карпеченко. В результате генетического эксперимента, проведенного исследователем, на свет появилось новое растение - капусторедька. На его побегах покачивались наполовину капустные, наполовину редечные плоды. Давайте поподробнее познакомимся с историей его создания.

Каждый селекционер, который пытался скрещивать разные виды растений, знает, что самое трудное - это не получить новый гибрид , а добиться того, чтобы он начал давать семена. Ведь если новый сорт не сможет размножаться, все труды окажутся напрасными - полученное растение рано или поздно погибнет, не оставив после себя потомков. Почему же плодовитые гибриды - это очень большая редкость? Чтобы ответить на этот вопрос, нам опять, в который раз, придется обратиться к механизму образования половых клеток - гамет. Вспомним, что каждая гамета, и мужская, и женская возникает в результате особого процесса деления клеток, который называется мейоз. Во время мейоза уменьшается число хромосом в клетках, поэтому гаметы несут ровно в два раза меньше хромосом, чем клетки родительского организма. Но в самом начале мейоза происходит еще одно очень важное событие - парные или, как говорят ученые, гомологичные хромосомы плотно прижимаются друг к другу и обмениваются между собой кусочками ДНК. А что будет, если хромосомы «не узнают» друг друга и не смогут обменяться генами? А ничего - нормальные гаметы возникнуть не смогут.

А теперь представим себе гибрид , возникший при скрещивании двух разных видов растений или животных. Каждая хромосома из пары гомологичных хромосом в его клетках происходит от разных организмов. В случае с капустой и редькой на каждую «капустную» хромосому приходится одна «редечная» - оба эти растения несут в половых клетках по 9 хромосом. Но гены капусты ничего общего с генами редьки не имеют (эти растения вообще относятся к разным биологическим родам). Значит, даже если удастся получить гибридное растение (например, путем «насильственного» опыления цветов капусты пыльцой редьки), хромосомы «не узнают» друг друга, и гибриды окажутся не способными к размножению.

Неужели нет никакой возможности получить способный к размножению гибрид? Как известно, безвыходных ситуаций не бывает. Ведь никто не говорил, что у гибридных растений вообще не образуются гаметы - нет, они все-таки появляются, но несут не строго определенное число хромосом (9, как полагается капусте и редьке), а случайное, например, 5 или 8. Значит, существует очень маленькая вероятность того, что появится гамета с 18 хромосомами - 9 капустных и 9 редечных хромосом окажутся в одной клетке. Из массы скрещиваний капусты с редькой, окончившихся неудачей, в одном случае Карпеченко получил растение, которое выросло и даже зацвело, после чего завязалось одноединственное семечко. Это и был тот самый счастливый случай: все 18 хромосом попали в одну гамету.

Необычная гамета случайно встретилась с гаметой, также несущей 18 хромосом, в результате выросло растение с 36 хромосомами, то есть обычный одинарный набор из 9 хромосом повторялся у него 4 раза (мы уже знаем, что такие растения обычно называют тетраплоидами). Таким образом, здесь мы опять сталкиваемся с уже знакомым нам явлением полиплоидии - увеличения количества хромосом. Деление клеток и образование гамет у этого гибрида прошло благополучно - каждая из девяти редечных хромосом теперь нашла себе пару, то же самое было и с капустными хромосомами.. Потомство такие организмы давали. Когда из семени выросло первое гибридное растение, его природа проявилась самым удивительным образом: половина плодов оказалась капустной, а другая половина - редечной. Капусторедька вполне оправдала свое название. Но Карпеченко не остановился на достигнутом. Гамету полученного гибрида он соединил с нормальной редечной гаметой. Теперь редечных хромосом оказалось вдвое больше, чем капустных, что не замедлило сказаться и на плодах: две трети каждого плода имели редечную форму и только одна треть - капустную. Так благодаря полиплоидии впервые сумели преодолеть природную нескрещиваемость двух разных родов.

Список растительных «кентавров» вовсе не ограничивается капусто-редечными гибридами. Так, в результате скрещивания двух зерновых культур - ржи и пшеницы - ученые получили целый ряд форм, объединенных общим названием тритикале. Тритикале обладает хорошей урожайностью, зимостойкостью и устойчивы ко многим болезням пшеницы. Благодаря гибридизации пшеницы и злостного полевого сорняка - пырея - селекционеры получили ценные сорта растений - пшенично-пырейные гибриды, устойчивые к полеганию и обладающие высокой урожайностью. Другой известный российский селекционер - И.В.Мичурин - скрестил вишню пенсильванскую (очень морозостойкий в отличие от привычной нам вишни вид) с черемухой и синтезировал новое растение, которое назвал церападусом. Лишь гораздо позднее обнаружилось, что церападусы самопроизвольно возникают на Памире, но чуть иначе.

Испокон веку человек создает гибриды как растений, так и животных. Наиболее древними в практике животноводства являются гибриды лошади с ослом (мул, лошак) и зеброй (зеброид), одногорбого верблюда с двугорбым (нар), яка и зебу с крупным рогатым скотом. В свиноводстве практикуется гибридизация домашних свиней с диким кабаном для улучшения приспособляемости к местным условиям. XX век породил тьму новых гибридов: в птицеводстве, рыбоводстве и скотоводстве. А тут еще лигры с тигронами. И конца этому не видно…

Улитка или растение?

Не так давно в СМИ появилось сообщение о находке гибрида растения с животным. Речь шла о морской улитке, длина которой составляет три сантиметра, живущей на Атлантическом побережье Северной Америки. Обнаружившая этот чудо-организм группа ученых из университетов США и Южной Кореи назвала его Elysia chlorotica.

По данным журнала New Scientist, эти морские улитки «являются формой, живущей на солнечной энергии: они едят растения и обладают способностью к фотосинтезу». Найденный гибрид - своего рода желатиновый завод зеленого цвета. Он выглядит как кусок дерева и частично обладает его потенциалом, сохраняюмесяцев, благодаря генам водорослей, которые он потребляет. Мало того что улитка получает хлоропласты - внутриклеточные органоиды растительной клетки, где осуществляется фотосинтез, позволяющий растениям преобразовывать солнечный свет в энергию, - она еще хранит их в своих клетках, расположенных вдоль кишечника. Самое любопытное заключается в том, что если Elysia chlorotica в первое время (две недели) питается водорослями, то всю оставшуюся жизнь - в среднем продолжительность ее не превышает года - она может не потреблять пищи. Пока ученые не смогли раскрыть все тайны этого странного существа, ДНК хлоропластов которого содержит лишь 10% кодированного белка, необходимого для активной жизни улитки. Тем не менее, ряд наблюдений и выводов они опубликовали в журналах американской Академии наук.

Не может быть, потому что…

Обнаружение гибрида растения с животным вызвало в ученом мире сенсацию, однако идея скрещивать животных с животными близких видов осенила человечество еще много лет назад. Классическим примером гибридизации является мул - гибрид кобылы и осла.

Это сильное, выносливое животное, которое используют в значительно более тяжелых условиях, чем родительские формы. Этим мул обязан явлению, названному учеными гетерозисом и наблюдаемому как у домашних животных, так и у растений: при межпородных или межвидовых скрещиваниях у гибридов первого поколения происходит особенно мощное развитие и повышение жизнеспособности.Кстати, гетерозис широко применяют в промышленном птицеводстве, например, при разведении бройлерных цыплят и в свиноводстве. В природе случаи скрещивания дикого животного с представителями других видов крайне редки. Скажем, газели Гранта и Томпсона счастливо сосуществуют в смешанных группах. Эти виды имеют очень много схожего, и отличить их друг от друга могут только эксперты. Несмотря на это, случаев скрещивания этих двух видов не отмечено.

Домашние собаки могут спариваться с другими видами без разбора, но дикие виды собачьих, такие как волки, лисы и койоты, размножаются только внутри своего вида. Помимо очевидных причин, этому мешает еще и то, что во многих группах животных и растений при межвидовых скрещиваниях образуются мощные, но стерильные гибриды, иллюстрацией чему служит упомянутый мул. Поскольку примеров стерильных гибридов множество, ученые пришли к выводу, что обмен генами между различными популяциями или популяционными системами ослабляется или предотвращается разного рода преградами, и коль скоро они мешают повсеместной гибридизации животных или растений близких видов, то в еще большей степени должны мешать появлению гибрида растения с животным.

Из многочисленных опытов ученые сделали вывод, что гибриды почти всегда появляются в неволе в результате неестественных условий обитания или искусственного осеменения. Гибриды забавные…Примером тому может служить величественный лигр - гибрид самца льва и самки тигра - самый крупный представитель семейства кошачьих. Равно как и тигролев - помесь самца тигра и самки льва. Впрочем, тиг-рольвы, или тигроны, наоборот, имеют склонность к карликовости и обычно по размерам меньше своих родителей. Самцы лигров и тигрольвов бесплодны. в то время как самки порой могут приносить потомство. Один тигрон жил с 1978 до 1998 года в Индии, другой в возрасте 24 лет в 2003 году умер в Пекинском зоопарке. В американском Институте охраняемых и редких видов в Майами живет лигр по кличке Геркулес, высота которого в холке составляет 3 м.

Первый лигренок появился в нашей стране в Новосибирском зоопарке в 2004 году, а потом родились еще двое лигрят. Леопардольвом называют результат скрещивания самца леопарда с самкой льва. Голова у него похожа на мамину, а тело - папино. А есть ведь еще и гибриды гибридов - это помеси между самцом тигра и самкой лигра/тигрольва или самцом льва и самкой лигра/тигрольва. Такие гибриды второго уровня чрезвычайно редки и находятся главным образом в частной собственности. Начало процесса скрещивания больших кошек восходит к тем дням, когда владельцы зоопарков хотели заполучить как можно больше странных существ для привлечения публики. Гибридизация берет свое начало в 1800-х, когда зоопарки представляли собой бродячие зверинцы, предназначенные для извлечения прибыли, а не для сохранения видов животных. В Индии, например, межвидовое скрещивание впервые было зафиксировано в 1837 году, когда принцесса индийского штата Джамнагар представила гибрид большой кошки королеве Виктории. Несмотря на то, что все эти гибриды великанов из породы кошачьих неизменно привлекают посетителей зоопарков, многие ученые полагают, что такой путь гибридизации бесперспективен и даже вреден. Во всяком случае, практической пользы от таких гибридов нет, в то время как сами они подвержены болезням и ранней смерти. …и полезные...

Недавно в отечественных СМИ появились сообщения об успешной гибридизации волчицы и пса в питомнике кинологического факультета Пермского военного института внутренних войск. Значительная часть полученных там гибридных животных обладает хорошо выраженными признаками толерантности, то есть терпимости к человеку, а это значит, что едва ли не главный барьер на пути практического использования волчьей спермы в собаководстве в принципе может быть преодолен.Кроме того, все волкособаки в эмоциональном плане весьма сдержанны. Они обладают значительно большей, чем собаки, физической выносливостью. Быстро осваивают площадку с препятствиями, забор высотой более 2 метров легко перепрыгивают с места, выстрелы и взрывы их не пугают. При дрессировке они очень быстро понимают и усваивают, что от них требуется, и, помимо того, несомненно, обладают прекрасным чутьем. Так, скорость обнаружения условного правонарушителя в схронах при обыске объекта у них не превышает одной минуты, у собак же, 1,5-4 минуты при нормативе до 6 минут. Разумеется, волкособаки, холодоустойчивые гибриды карпов с амурским сазаном, овец с муфлоном и архаром не столь впечатляют, как лигры и тигрольвы, но пользы человечеству приносят не в пример больше. А что нам ждать в будущем от крохотной улитки - покажет жизнь.

Несколько интересных фото работ...




В селекции растений используется такой метод, как гибридизация. При этом скрещивают организмы, отличающиеся наследственностью, то есть одной и более парами аллелей генов, а следовательно одним или несколькими внешними признаками. Этот метод селекции включает инбридинг (внутривидовую гибридизацию) и аутбридинг (отдаленную, или межвидовую гибридизацию).

Издавна люди наблюдали процесс естественной гибридизации. Так, животные-гибриды – мулы – были известны еще 2000 лет до нашей эры. Впервые искусственную гибридизацию произвел ученый-садовод Т. Фэрчайлд, который скрестил два вида гвоздик. Научные основы генетики были заложены Менделем, который проводил опыты по гибридизации гороха.

Принцип гибридизации

Заключается в том, что при оплодотворении происходит слияние двух различных по генотипу половых клеток с образованием зиготы, из которой развивается новый организм, наследующий признаки обоих родителей. Естественная гибридизация происходит в природе, искусственная осуществляется человеком в селекции или с другими целями. При этом у покрытосеменных цветки материнского растения опыляются пыльцой другого вида или сорта.

В селекции растений гибридизация используется чрезвычайно широко. Если данный метод необходим с целью соединения желательных свойств исходных организмов, это «комбинационная селекция». В том случае, когда преследуется цель получения и отбора генотипов более лучшего качества, по сравнению с родительскими формами, говорят о «трансгрессивной селекции».

В растениеводстве распространена гибридизация форм в пределах одного вида, или внутривидовая. В результате использования этого метода было создана большая часть сортов культурных растений. Отдаленная гибридизация является более сложным и трудоемким методом развития гибридов. Основная проблема при получении отдаленных гибридов – несовместимость гамет скрещиваемых форм и стерильность полученных гибридов.

Технологические процессы гибридизации различных сельско-хозяйственных культур существенно различаются между собой. Для получения гибридных форм кукурузы растения двух сортов высевают рядами поочередно, а султаны на материнских растениях срезают за несколько дней до цветения. У культур с перекрестным опылением цветков, например, ржи, используют кастрацию цветков материнских растений. У плодовых деревьев кастрация выполняется за 1-2 дня до того, как распустятся бутоны, а женские цветки изолируют, накрывая марлей. После раскрывания бутонов на рыльца пестиков наносят заранее заготовленную пыльцу. Из гибридных семян выращивают новые растения, помещая семена в специальную питательную среду и обеспечивая благоприятные условия для роста.

Виды гибридизации

Большинство из нас едят гибридные фрукты, даже не осознавая этого. И хотя многие люди полагают, что такая еда не очень вкусная, как обычные сорта, но они очень популярны у людей. Было время, когда определенный фрукт был доступен только в одно время на рынках. Сейчас, в продуктовых магазинах вы найдете не только сезонные фрукты, но и некоторые виды не сезонных. Некоторые из этих фруктов, возможно, были привезены из другого места, но чаще вы увидите фрукты местных сортов. Эти фрукты являются гибридами. Данные фрукты выводятся с помощью скрещивания с двух или более аналогичных сортов в пределах одного вида или рода. В результате скрещенное растение получает свойства обоих родителей.

В гибридизации нет ничего нового, это даже происходит естественным путем, чтобы появлялись новые фрукты. Искусственная гибридизация делается для увеличения урожайности сельскохозяйственных культур, улучшение питательных свойств и избавление от некоторых вредителей.

Недостатком данных фруктов является то, что они могут не иметь вкуса и оригинального аромата. Другим недостатком является то, что посадив семена данных растений, не всегда будут из них вырастать такие же растения, как и гибридное родительское растение.

Гибриды это не генетически модифицированные фрукты. В генетические модифицированные фрукты вносится ген другого фрукта или даже животного. Так, например, в помидоры внесли ген животного, этот ген, блокирует синтез фермента, ответственного за созревание плодов.

Узнать больше о гибридах цитрусовых фруктов можете здесь.


Агли фрукт это получилсяс помощью скрещивания грейпфрута и мандарина. Это большой сладкий сочный фрукт с зеленовато-желтой морщинистой кожей. Плод агли имеет сладкую мякоть. В основном культивируется во Флориде. Агли немного больше, чем грейпфрут. Вкус скорее напоминает смесь лимона и мандарина.


Апельсин это гибрид мандарина и помело и начали его культивировать еще за 2,5 тысяч лет до н.э.


Априум получился, благодаря, скрещиванию сливы с абрикосом. Априумы доступны в США в июне. Плод сухой и не очень сочный, при этом очень сладкий с апельсиновым ароматом. Вкус спелых плодов похож на абрикос.


Бойзенова ягода получилась, благодаря, скрещиванию ежевики, малины и логановой ягоды. Ягода больше ежевики с крупными семенами. Ягода имеет насыщенный бордовый цвет. И становится черного цвета, когда поспевает.

Фрукт грейпл представляет собой сочетание винограда и яблока. Grape + apple= grapple. Плод на вкус как виноград, а выглядит как яблоко. Грейпл обычно выглядит больше и мякоть слаще и более хрустящая. Грейпл является торговой маркой, которая была специально обработана, чтобы вкус мякоти был похож на виноград. Грейпл является разновидностью Fuji яблока.

Грейпфрут является гибридом двух цитрусовых видов, помело и апельсина. У плода мякоть красного цвета. Грейпфрут бывает с желтой, оранжевой кожурой и видов: белой, розовой и красной. Цвет не влияет на вкус, в тоже время розовый и красный грейпфрут добавят в вашу диету витамин А.


Декопон является скрещеным между Kiyomi tangor и Ponkan. Kiyomi tangor сам является разновидностью скрещеной между Trovita orange и Mikan или Satsuma. Декопан не имеет косточек и имеет очень сладкие плод. Декопан вывели в Японии в 1972 году. Родовое название декопана shiranuhi или shiranui. Плод декопана очень большой и имеет сладкий вкус.


Йошта получилась, благодаря, скрещиванию между черной смородиной и крыжовником. Размер плода очень большой, но вкус подобен смородине. Плод выдерживает заморозки также хорошо, как и черная смородина. Ягода была выведена в Германии и полностью устойчива к грибкам и бактериям, которые повреждают смородину. Созревшие ягоды имеют темно-синий цвет.


Кровавый лайм является гибридом красного пальчикового лайма и мандарином Ellendale. Кожура, мякоть и сок имеет кроваво-красный цвет. На вкус они очень кислые. Плоды 20-30 мм в ширину.

Лаймкват


Лаймкват это цитрусовый фрукт, который скрещен между лаймом и кумкватом. Лаймкват это небольшое деревцо, которая имеет густую листву и производит много фруктов в молодом возрасте. Он используется во многих рецептах, там где есть лаймы и лимоны. Плод лаймквата небольшой зелено-желтого цвета. Не имеет семян. Плод содержит мало калорий.

Разновидности лаймквата:

Юстис: лайм скрещенный с круглым кумкватом. Лейкленд: лайм скрещенный с круглым кумкватом, с другими семенами гибрида от родителей, как Юстис. Таварес:лайм скрещенный с овальным кумкватом, где плод намного больше и более удлиненный.


Лемато является гибридным вариантом лимона и помидора. Хотя в помидор добавили ген базилика, из-за которого помидор пахнет лимоном. Израильские исследователи разработали генетически модифицированный помидор, который по вкусу напоминает лимон и аромат розы. Около 82 человек попробовали экспериментальный фрукт с не модифицированным фруктом. Они описали этот фрукт как аромат розы, герани и зелени лимона.

Мнения респондентов:

  • Генетически модифицированные помидоры предпочли 49 человек
  • Настоящие помидоры предпочли 29 человек
  • 4 человека не склонились ни к одному виду помидоров.

Генетически модифицированные помидоры бывают только светло-красного цвета, потому что они содержат в два раза меньше ликопена, как и обычные помидоры. Они имеют длительный срок хранения и им нужно меньше пестицидов для роста.

Лимандарин, рангпур


Рангпур является гибридным сортом скрещенным между мандарином и лимоном. Рангпур также известен под названием лемандарин. Плод имеют кислый вкус. Название «рангпур» возникло с бенгальского языка. Поскольку этот фрукт выращивается в Рангпуре в Бангладеше, город известен цитрусовыми фруктами. Рангпур также может использоваться для замены лаймов. Плод может быть как маленьким, так и средним по размеру. Рангпур используется как декоративное или комнатное растение в США. Но в основном используется в качестве подвоя в других странах.


Логанова ягода является гибридом американской ежевики и европейской красной малины. Ягоды крупные и удлиненные. Созревшие ягоды становятся темными и ярко-красными. Их собирают в период с июля по сентябрь. Ягоды сочные и имеют резкий кислый вкус. Плоды всегда созревают очень рано.


Марионберри скрещенный между Chehalem и Olallieberries. Эти я годы наиболее распространенные сорта ежевики. Ягоды также блестят, как и другие сорта ежевики. Ягоды среднего размера, сладкие, сочные и имеют терпкий вкус.


Нектакотум является гибридной разновидностью абрикоса, сливы и нектарина. Они красновато-зеленого цвета с мякотью светло-розового цвета. Плод имеет сладкий вкус. Хорошо будет добавлять его в салаты.


Плод круглой и немного грушевидной формы, который по размеру как грейпфрут. Кожура блестяще-желтая и легко чистится. Внутренняя часть делится в основном на 9-13 сегментов, не горькие, мякоть желто-оранжевого цвета. Стенки нежные с мягким вкусом апельсина и грейпфрута и чуть-чуть кислая.


Ортаник это гибрид, скрещенный между апельсином и танжерином. Фрукт был обнаружен на Ямайке. У него сильный цитрусовый аромат и резкий, смутный сладкий вкус. Ортаник имеет бледный цвет и без семян. Имеет сочную мякоть и растет в Средиземноморском регионе.


Olallieberry получился, благодаря, скрещиванию логановой ягоды и янгберри, внешне похожа на классическую ежевику. Имеет сладкий аромат. Используются для создания джемов и вина. Ягоды крупные блестящие и сочные. Эта ягода была выведена 1950 году. Ягоды очень специфические и доступны в основном в Калифорнии.

Пайнберри


Пайнберри получился, благодаря, скрещиванию земляники чилийской и земляники вирджинской. Плод очень ароматный с ананасовым вкусом. Когда плоды созревают, то они становятся белыми с красными семенами. Пайнбери выращивают очень мало, в основном в Европе и Белизе.


Плумкот получился, благодаря, скрещиванию между сливой и абрикосом. Плоды бывают желтого цвета с красным оттенком, мякоть красного или темно-фиолетового цвета в зависимости от сорта. Имеет очень гладкую кожу, подобно сливе. Плумкот растет хорошо там, где растет слива или абрикос.


Плуот фрукт индивидуального скрещивания между сливой и абрикосом. Это новый фрукт, который был выведен Флойдом Зайгером в 1990. Плуот бывает разных цветов от розового до красного. Плуот намного слаще, чем его родители (слива и абрикос). Плуот бывает очень сочным и сладким, поэтому его так любят дети. Имеется около 25 сортов. Плод имеет очень низкое содержание жира и натрия.

Свити, оробланко


Свити это гибрид между помело и белым грейпфрутом. Плод сладкий, большого размера с малым количеством семян. Свити по вкусу похож на запах его цветов. Деревья оробланки не растут в холодных условиях. У него есть тенденция приспосабливаться к окружающей среде очень быстро и хорошо расти. Плод имеет толстую кожуру. В основном импортируется из Израиля.

Citrofortunella mitis


Citrofortunella mitis является гибридом мандарина и кумквата. Плоды кислые и обычно используются в кулинарии.


Тайбери является одной из многочисленных гибридных ягод, скрещенных с ежевикой и малиной. Она была выведена в Шотландии и названа в честь шотландской реки Тэй. Тайбери часто растет в приусадебных садах. Имеет сильный терпкий аромат.


Тангор получился, благодаря, скрещиванию мандарина и апельсина.


Танжело получился, благодаря, скрещиванию танжерина помело или грейпфрута. Плоды танжело и мандарина похожи. Танжело начинает созревать с конца осени по конец зимы. Размер плода обычно бывает от стандартного апельсина до размера грейпфрута. Мякоть танжелы красочная и очень сочная. Из него можно выжимать сок.

Томтато это гибрид картофеля и помидора. На томтато вырастают как помидоры, так и картошка. От семян томтато появляются либо картофель, либо помидоры, они не сохраняют материнские признаки.


Этот фрукт, который распространен в отпускные месяцы, является разновидностью мандарина. Созревают раньше, чем другие цитрусовые фрукты и этот вид фрукта также можно выращивать дома в теплых регионах. Fairchild tangerine был получен путем скрещивания клементина с Orlando tangelo. Плоды вкусные и легко чистятся.


Юдзу получился, благодаря, скрещиванию мандарина с папедой (ичанский лимон). Этот фрукт очень похож на грейпфрут с неровной кожурой. Диаметр плода от 5,5 см до 7,5 см. Этот фрукт в основном выращивают в Китае, Кореи и Японии. Плоды очень ароматные и могут быть желтого или зеленого цвета в зависимости от спелости. Вперёд

Гибрид (от лат. hibrida ) - создание новой особи путем скрещивания живых организмов различных пород, видов, сортов. Процесс гибридизации применяется в основном к живым существам (животным, растениям).

В статье будет сделан акцент на создание таких организмов в животном мире. Это наиболее сложные эксперименты. Также читатель сможет увидеть гибриды животных, фото которых размещены в разделах.

История

Первые попытки создания гибридов осуществлялись еще в XVII веке немецким ученым в области ботаники Камерариусом. А в 1717 году английским садоводом Томасом Фрэйдчайлдом научному сообществу был представлен успешный результат гибридизации - новый вид гвоздики.

В царстве животных все было гораздо сложнее. В мире дикой природы крайне редко можно встретить гибриды животных. Поэтому скрещивание представителей разного вида происходило искусственно - в лабораторных условиях или в заповедниках.

Самый первый гибрид с тысячелетней историей - это, конечно же, мул - смесь осла и лошади.

С середины XIX века с появлением заповедников и зоопарков (в таком виде, в котором мы привыкли их видеть в современности) стали скрещивать между собой медведей - бурого и белого, а также зебру с лошадью.

Уже с середины XX века ученые во всем мире проводят эксперименты по скрещиванию различных видов животных. Все они преследуют различные цели: кто-то выводит гибриды для улучшения производительности, кто-то - для экзотики, а кто-то - для получения эффективных лекарств.

Гибриды животных: какие они?

Во всем мире насчитывается более 80 межвидовых гибридов, но остановимся на самых ярких и известных представителях.

Пизли

Пизли (акнук) - помесь белого медведя и медведя гризли. Первое упоминание о необычном животном датируется 1864 годом. Тогда в северо-западной части Северной Америки, возле озера Рандеву, был застрелен медведь с необычным мутно-белым окрасом и с золотисто-коричневой мордой.

Спустя 10 лет в немецком зоопарке (г. Галле) было получено первое потомство от белого и бурого медведей. Малыши рождались белого цвета, но со временем окрас менялся на голубовато-бурый или золотисто-бурый. Пизли показали хорошие результаты в плане размножения: гибридные животные успешно давали потомство. Скрещивание происходило и между акнуками, и с представителями чистой линии.

Зачастую межвидовые гибриды животных не являются репродуктивными, но пизли составляют исключение, так как оба медведя по биологическим признакам можно отнести к одному виду, но, исходя из ряда морфологических признаков, медведи были выделены учеными в отдельные виды.

Еще до 2006 года существовало мнение, что гибриды животных не встречаются в естественной среде. Этот миф был развеян 16 апреля 2006 года американским охотником Джимом Мартеллом, который на острове Банки (канадская часть Арктики) застрелил пизли, что стало неоспоримым доказательством появления гибридов в дикой природе.

Лигр и тигролев

Первый - гибрид тигрицы и льва, а второй - потомство львицы и тигра. Данные гибриды животных появляются на свет исключительно в искусственных условиях, причина тому банальна - разные места обитания (Африка и Евразия) не позволяют им встретиться, это возможно только в зверинцах.

Внешне лигры похожи на пещерного льва, который вымер еще в период плейстоцена. На сегодняшний день этот гибрид считается самым крупным среди кошачьих. Объясняется это явление генами роста: у тигров они не так активны, как у львов. По этой же причине тигролев меньше тигра.

В парке развлечений «Джангл Айленд» (Майями, США) содержится самец лигр по имени Геркулес весом 418 кг. Для сравнения: средний вес амурского тигра варьируется от 260 до 340 кг, а африканского льва - от 170 до 240 кг. Так, Геркулес за один подход поглощает до 45 кг пищи, а скорость в 80 км/ч развивает за 10 секунд.

Примечательность лигров состоит в том, что эти кошки любят плескаться в воде. Еще одна особенность: лигры - одни из немногих гибридов, которые способны воспроизводить потомство. Так, в Новосибирском зоопарке 16 августа 2012 года лев Самсон и лигрица Зита стали родителями, дав жизнь лилигрице Киаре.

На сегодняшний день в мире насчитывается чуть более 20 лигров.

Бестер

Бестер - гибрид двух представителей семейства осетровых - самки белуги и самца стерляди. Своим появлением бестер обязан российскому ученому-биологу - профессору Н. И. Николюкину. С 1948 года он вплотную занялся проблемой гибридизации осетровых. В 1952 году супруга Николая Ивановича, которая вместе с мужем работала над созданием гибридов рыб, попыталась искусственным путем получить потомство стерляди и белуги. Неколюкины не предполагали, что этот внеплановый эксперимент положит начало новому направлению в рыбоводстве.

Во время опытов профессор скрещивал разные виды осетровых, но до белуги и стерляди очередь не доходила. Возможно, он считал подобный эксперимент изначально провальным, так как эти осетровые разные по размеру и весу (белуга - до тонны, а стерлядь - не более 15 кг), обитают и нерестятся в разных местах, да и их гибриды не могут давать потомство. Но все произошло с точностью до наоборот.

Бестер взял от белуги быстрый рост, а от стерляди - быстрое половое созревание, что является немаловажным фактором для промышленной рыбы. Также у гибрида получилось неимоверно нежное мясо и вкусная икра.

Сейчас на территории России бестеров разводят в промышленных масштабах.

Кама (верблюлама)

Это гибрид бактриана-самца и ламы-самки. Первая кама увидела свет в 1998 году в репродукционном центре животных Дубая. Особь создавалась искусственно, основной целью такого скрещивания было получить животное с выносливостью верблюда и качеством шерсти ламы. Эксперимент удался. Кама получилась весом до 60 кг, с шерстью длиной не менее 6 см, со способностью перевозить грузы до 30 кг. Недостаток верблюламы - неспособность к размножению. Конечно, в природе такой вариант был бы невозможен, так как ламы обитают в Южной Америке, а бактрианы - в Азии и Африке, да и по размерам первые значительно уступают вторым. Несмотря на эти данные, оказалось, что у верблюда и ламы одинаковое количество хромосом.

На сегодняшний день в ОАЭ получено шесть особей кам.

Косаткодельфин (вольфин, китофин)

Косаткодельфин - гибрид касатки (малая черная) и афалины. Первый вольфин появился в аквапарке в Токио, но погиб в полугодовалом возрасте. Второй гибрид косаткодельфина появился на Гавайях в морском парке SeaLifePark в 1986 году. Самка вольфина по кличке Кекаималу начала размножение в возрасте пяти лет, что довольно рано для касаток и дельфинов. Первый опыт материнства был несколько неудачным: мать отказывалась кормить малышку, поэтому её выкармливали искусственно, что позволило вырастить абсолютно ручную особь, но ее жизнь оказалась непродолжительной и оборвалась в возрасте 9 лет. Счастье материнства Кекаималу испытывала три раза, но наиболее успешным оказался последний: в 2004 году от самца афалины появилась на свет самочка Кавили Каи. Малышка оказалась очень игривой, а через месяц после рождения достигла размеров своего отца.

Интересный факт обнаружили ученые: у вольфина 66 зубов, у афалины - 88, а у касатки - 44.

Сейчас в мире существует две особи косаткодельфина, которые содержатся на Гавайях. Иногда появляется информация, что вольфинов видели на воле, но ученым пока не удалось подтвердить эти данные.

Другие гибриды

Давайте посмотрим, каковы наиболее распространенные гибриды животных. Примеры достаточно интересны. Это следующие гибриды:

  • домашней лошади и зебры - зеброид;
  • осла и зебры - зебрул;
  • бизона и зубра - зубробизон;
  • соболя и куницы - кидас;
  • цихлидовых - попугай красный;
  • самки африканского льва и леопарда - левопард;
  • леопарда и львицы - леопон;
  • глухаря и тетерева - межняк;
  • дромадера и бактриана - нар;
  • львицы и тигра - тигон;
  • зайцев русака и беляка - тумак;
  • коровы и яка - хайнак (дзо);
  • хорька и норки - хонорик;
  • леопарда и ягуара - ягопард.

А вот такие в ходе многих экспериментов получались

  • лошади и осла - мул;
  • ослицы и жеребца - лошак;
  • барана и козы;
  • алмазного и золотого фазанов - гибридный фазан;
  • коровы домашней и американского бизона - бифало;
  • гибрид, полученный в результате скрещивания селезней мускусных с утками пекинской белой, руанской, оргпингтон, белой алье - муллард;
  • свиньи домашней с боровом диким - свинья из железного века.

Про гибриды животных можно говорить очень долго, учитывая их количество и многообразие. Но есть ли другие варианты, например, гибриды животных и растений?

На сегодняшний день существует единственный известный гибрид - морская улитка (Elysia chlorotica), обитающая на побережье Северной Америки со стороны Атлантического океана. Эти животные питаются солнечной энергией: употребляя в пищу растения, они фотосинтезируют. Улитку окрестили желатиновым заводом зеленого цвета. Этот гибрид получает хлоропласты, которые потом хранятся в клетках кишечника. Любопытный факт: морская улитка при продолжительности жизни не более одного года может питаться только первые две недели с момента рождения, после чего потребление еды становится неприоритетным.

Гибриды растений и животных стали уже привычными, а как бы отреагировала общественность на гибрид человека и животного? И существуют ли такие?

О существовании таких гибридов ходит много слухов, но, к сожалению, есть весьма мало фактов. Однако, изучая мифологию разных народов, ученые указывают на наличие практически во всех эпосах зверолюдей. Ученые из Австралии и США изучили более 5000 наскальных рисунков, текстов. Чаще всего встречаются описания людей, тела которых (как правило, нижняя часть) состоят из тела лошади, козла, барана, собаки. Названия таких зверолюдей нам хорошо известны из мифологии. Это кентавры, минотавры, сатиры и другие.

Существование подобных «людей» ученые объяснили тем, что в древние времена зоофилия была обычным явлением, особенно в армии, ведь рядом всегда содержались стада овец и коз. Животные были для военных не только потенциальной пищей, но и объектами удовлетворения сексуальных потребностей. У многих ученых Средневековья встречаются упоминания о рождении у женщин детей от животных и наоборот. Эти факты остаются под большим вопросом, так как с биологической точки зрения это невозможно из-за разного набора хромосом.

В последнее время общественности открываются все новые, неоднозначные факты. Один из таких фактов - проведение эксперимента по оплодотворению женщины спермой шимпанзе в фашистской Германии и СССР. По некоторым данным, Советский Союз после ряда попыток получил положительный результат. Дальнейшая судьба эксперимента еще не раскрыта.

Гибрид человека и животного для современного общества является нонсенсом, но в СМИ продолжает появляться информация о подобных экспериментах. Правда это или вымысел? Судить будем лет через 10-20. Время покажет, как далеко шагнет наука, а пока будем поглощать гибридные фрукты-овощи, наслаждаться красотой гибридных растений и животных и надеяться, что человечество не вернется в каменный век.

Представляют собой финальный результат скрещивания различных видов флоры. В процесс скрещивания видов животных протекает без человеческого вмешательства, тогда как растения гибридизируют ученые, желающие достичь определенной цели. Так, благодаря гибридным сортам, овощи дают повышенный и способны быстро приспосабливаться к различным климатическим условиям. Кроме этого, гибридные растения более устойчивы к и изменениям погодных условий.

На сегодняшний день гибридные продукты выращиваются практически повсеместно, а большинство сортов перца, огурцов и помидоров выращены методом гибридизации.

Однако есть у данного метода и свои. Гибридные растения являются либо стерильными, либо их семена не дадут урожая таких же усовершенствованных плодов, что непосредственно связано с расщеплением признаков. Впрочем, любой человек может самостоятельно вывести гибридное растение, которое может пригодиться в хозяйстве и, возможно, стать новым сенсационным сельскохозяйственным видом.

Как вывести гибрид

Переопыление хорошо переносится кабачками, тыквой и патиссонами. Поэтому для получения нового гибридного сорта следует посадить несколько разных видов какого-либо из этих овощей в непосредственной близости друг от друга. Насекомые опылят их, перенеся пыльцу одного растения на другое – а результатом с большой вероятностью станет невиданный ранее патиссон или кабачок.

Гибридные растения не всегда берут от своих «родителей» самые лучшие качества – часто они дают мелкий и невзрачный по всем параметрам урожай.

Также можно вывести гибридный сорт клубники, однако тут уже потребуется серьезно приложить руки. Необходимо посрывать полностью созревшие соцветия растений-гибридизаторов, собрать с них мягкой кистью пыльцу и аккуратно поместить ее на рыльца подопытных растений. Каждый переопыленный цветок нужно поместить в прозрачный индивидуальный пакетик и завязать его веревочкой.

Для получения гибрида земляники нужно дождаться полного созревания ягод, сорвать их и высушить для получения семян. Для посева берутся только маленькие земляничные зернышки, которые обычно хрустят на зубах и застревают в них при поедании земляники или земляничного варенья. Их и высевают в качестве рассады для получения гибридного сорта этой вкусной лесной ягоды.

Похожие публикации